In this paper, we consider a class of non-autonomous nonlinear evolution equations in separable reflexive Banach spaces. First, we consider a linear problem and establish the approximate controllability results by finding a feedback control with the help of an optimal control problem. We then establish the approximate controllability results for a semilinear differential equation in Banach spaces using the theory of linear evolution systems, properties of resolvent operator and Schauder's fixed point theorem. Finally, we provide an example of a non-autonomous, nonlinear diffusion equation in Banach spaces to validate the results we obtained.
Citation: |
[1] | N. Abada, M. Benchohra and H. Hammouche, Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, Journal of Differential Equations, 246 (2009), 3834-3863. doi: 10.1016/j.jde.2009.03.004. |
[2] | E. Asplund, Averaged norms, Israel Journal of Mathematics, 5 (1967), 227-233. doi: 10.1007/BF02771611. |
[3] | K. Balachandran and J. P. Dauer, Controllability of nonlinear systems in Banach spaces, J. Optim. Theory Appl., 115 (2002), 7-28. doi: 10.1023/A:1019668728098. |
[4] | K. Balachandran and R. Sakthivel, Approximate controllability of integrodifferential systems in Banach spaces, Appl. Math. Comput., 118 (2001), 63-71. doi: 10.1016/S0096-3003(00)00040-0. |
[5] | V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Mathematics in Science and Engineering, Academic Press, Inc, 190 (1993). |
[6] | A. E. Bashirov and N. I. Mahmudov, On concepts of controllability for deterministic and stochastic systems, SIAM J. Control Optim., 37 (1999), 1808-1821. doi: 10.1137/S036301299732184X. |
[7] | J. M. Borwein and J. Vanderwerff, Fréchet-Legendre functions and reflexive Banach spaces, J. Convex Anal., 17 (2010), 915-924. |
[8] | H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011. |
[9] | Y. K. Chang, J. J. Nieto and W. S. Li, Controllability of semilinear differential systems with nonlocal initial conditions in Banach spaces, J. Optim. Theory Appl., 142 (2009), 267-273. doi: 10.1007/s10957-009-9535-2. |
[10] | Y. K. Chang, W. S. Li and J. J. Nieto, Controllability inclusions in Banach spaces, Nonlinear Anal., 67 (2007), 623-632. doi: 10.1016/j.na.2006.06.018. |
[11] | P. Chen, X. Zhang and Y. Li, Approximate controllability of Non-autonomous evolution system with nonlocal conditions, Journal of Dynamical and Control Systems, 26 (2020), 1-16. doi: 10.1007/s10883-018-9423-x. |
[12] | R. Curtain and H. J. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory, New York: Springer-Verlag, 1995. doi: 10.1007/978-1-4612-4224-6. |
[13] | J. P. Dauer and N. I. Mahmudov, Approximate controllability of semilinear functional equations in Hilbert spaces, J. Math. Anal. Appl., 273 (2002), 310-327. doi: 10.1016/S0022-247X(02)00225-1. |
[14] | R. Dhayal, M. Malik, S. Abbas, A. Kumar and R. Sakthivel, Approximation theorems for controllability problem governed by fractional differential equation, Evolution Equations and Control Theory, 2020. doi: 10.3934/eect.2020073. |
[15] | I. Ekeland and T. Turnbull, Infinite-Dimensional Optimization and Convexity, The University of Chicago press, Chicago and London, 1983. |
[16] | Z. Fan, Characterization of compactness for resolvents and its applications, Appl. Math. Comput., 232 (2014), 60-67. doi: 10.1016/j.amc.2014.01.051. |
[17] | Z. Fan, Approximate controllability of fractional differential equations via resolvent operators, Advances in Difference Equations, 54 (2014), 1-11. doi: 10.1186/1687-1847-2014-54. |
[18] | W. E. Fitzgibbon, Semilinear functional differential equations in Banach spaces, J. Differential Equations, 29 (1978), 1-14. doi: 10.1016/0022-0396(78)90037-2. |
[19] | X. Fu and K. Mei, Approximate controllability of semilinear partial functional differential systems, J. Dyn. Control Syst., 15 (2009), 425-443. doi: 10.1007/s10883-009-9068-x. |
[20] | X. Fu, Approximate controllability of semilinear non-autonomous evolution systems with state dependent delay, Evolution Equations and Control Theory, 6 (2017), 517-534. doi: 10.3934/eect.2017026. |
[21] | X. Fu and R. Huang, Approximate controllability of semilinear non-autonomous evolutionary systems with nonlocal conditions, Autom Remote Control, 77 (2016), 428-442. doi: 10.1134/s000511791603005x. |
[22] | A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, CRC Press, 1998. |
[23] | R. K. George, Approximate controllability of non-autonomous semilinear systems, Nonlinear Analysis, 24 (1995), 1377-1393. doi: 10.1016/0362-546X(94)E0082-R. |
[24] | H. Huang and X. Fu, Approximate controllability of semilinear neutral integro-differential equations with nonlocal conditions, J. Dyn. Control Syst., 26 (2020), 127-147. doi: 10.1007/s10883-019-09438-5. |
[25] | J. Klamka, Constrained controllability of semilinear systems with delays, Nonlinear Dynam, 56 (2009), 169-177. doi: 10.1007/s11071-008-9389-4. |
[26] | J. Klamka, Controllability and Minimum Energy Control, Monograph in Studies in Decision and Control, Springer-Verlag, 2018. doi: 10.1007/978-3-319-92540-0. |
[27] | A. Kumar, M. C. Joshi and A. K. Pani, On approximation theorems for controllability of non-linear parabolic problems, IMA Journal of Mathematical Control and Information, 24 (2007), 115-136. doi: 10.1093/imamci/dnl012. |
[28] | S. Kumar and N. Sukavanam, Approximate controllability of fractional order semilinear systems with bounded delay, J. Differ. Equ., 252 (2012), 6163-6174. doi: 10.1016/j.jde.2012.02.014. |
[29] | X. Li, and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser Boston, Boston, 1995. doi: 10.1007/978-1-4612-4260-4. |
[30] | N.I. Mahmudov, Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces, SIAM J. Control Optim, 42 (2003), 1604-1622. doi: 10.1137/S0363012901391688. |
[31] | N. I. Mahmudov and A. Denker, On controllability of linear stochastic systems, Internat. J. Control, 73 (2000), 144-151. doi: 10.1080/002071700219849. |
[32] | N. I. Mahmudov, On controllability of linear stochastic systems, IEEE Transactions on Automatic Control, 46 (2001), 724-731. doi: 10.1109/9.920790. |
[33] | R. Megginson, An Introduction to Banach Space Theory, Graduate Texts in Mathematics, Springer, New York, Vol. 183, 1998. doi: 10.1007/978-1-4612-0603-3. |
[34] | I. Mishra and M. Sharma, Approximate controllability of a non-autonomous differential equation, Proc. Indian Acad. Sci. (Math. Sci.), 128. doi: 10.1007/s12044-018-0391-6. |
[35] | M. T. Mohan, On the three dimensional Kelvin-Voigt fluids: global solvability, exponential stability and exact controllability of Galerkin approximations, Evolution Equations and Control Theory, 9 (2020), 301-339. doi: 10.3934/eect.2020007. |
[36] | A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations in Applied Mathematical Sciences, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1. |
[37] | R. Sakthivel, Y. Ren and N. I. Mahmudov, Approximate controllability of second-order stochastic differential equations with impulsive effects, Modern Phys. Lett. -B, 24 (2010), 1559-1572. doi: 10.1142/S0217984910023359. |
[38] | R. Sakthivel and E. R. Anandhi, Approximate controllability of impulsive differential equations with state-dependent delay, Internat. J. Control, 83 (2010), 387-393. doi: 10.1080/00207170903171348. |
[39] | R. Sakthivel, J. J. Nieto and N. I. Mahmudov, Approximate controllability of nonlinear deterministic and stochastic systems with unbounded delay, Taiwanese. J. Math., 14 (2010), 1777-1797. doi: 10.11650/twjm/1500406016. |
[40] | R. Sakthivel, Approximate controllability of impulsive stochastic evolution equations, Funkcial. Ekvac, 52 (2009), 425-443. doi: 10.1619/fesi.52.381. |
[41] | R. Triggiani, A note on the lack of exact controllability for mild solutions in Banach spaces, SIAM Journal on Control and Optimization, 15 (1977), 407-411. doi: 10.1137/0315028. |
[42] | K. Yosida, Functional Analysis, Springer-Verlag, Heidelberg, New York, 1978. |
[43] | E. Zuazua, Controllability and observability of partial differential equations: Some results and open problems, Handbook of Differential Equations: Evolutionary Differential Equations, Vol. 3, Elsevier Science, Amsterdam, (2006), 527–621. doi: 10.1016/S1874-5717(07)80010-7. |