\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Comparison between Taylor and perturbed method for Volterra integral equation of the first kind

Abstract / Introduction Full Text(HTML) Figure(0) / Table(5) Related Papers Cited by
  • As it is known the equation $ A\varphi = f $ with injective compact operator has a unique solution for all $ f $ in the range $ R(A). $Unfortunately, the right-hand side $ f $ is never known exactly, so we can take an approximate data $ f_{\delta } $ and used the perturbed problem $ \alpha \varphi +A\varphi = f_{\delta } $ where the solution $ \varphi _{\alpha \delta } $ depends continuously on the data $ f_{\delta }, $ and the bounded inverse operator $ \left( \alpha I+A \right) ^{-1} $ approximates the unbounded operator $ A^{-1} $ but not stable. In this work we obtain the convergence of the approximate solution of $ \varphi _{\alpha \delta } $ of the perturbed equation to the exact solution $ \varphi $ of initial equation provided $ \alpha $ tends to zero with $ \dfrac{\delta }{\sqrt{\alpha }}. $

    Mathematics Subject Classification: Primary: ; Secondary: 65N20, 65M25, 65D30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table .   

    Val of $x$Ex sol $\varphi $Ap sol $\varphi _{T}$Error$_{T}$Ap sol $\varphi _{\alpha \delta }$Error$_{\delta }$
    0.0000.00e+000.00e+000.00e+000.00e+000.00e+00
    0.2003.97e-013.97e-013.31e-043.97e-015.55e-17
    0.4007.78e-017.79e-013.17e-047.78e-015.55e-16
    0.6001.12e+001.13e+009.36e-041.12e+002.44e-15
    0.8001.43e+001.43e+001.52e-031.43e+003.99e-15
    1.0001.68e+001.68e+002.08e-031.68e+004.21e-15
     | Show Table
    DownLoad: CSV

    Table .   

    Val of $x$Ex sol $\varphi $Ap sol $\varphi _{T}$Error$_{T}$Ap sol $\varphi _{\alpha \delta }$Error$_{\delta }$
    0.0001.00e+001.00e+000.00e+001.00e+000.00e+00
    0.2008.18e-018.10e-017.84e-038.18e-013.89e-011
    0.4006.70e-016.63e-016.38e-036.70e-015.14e-011
    0.6005.48e-015.43e-015.39e-035.48e-015.17e-011
    0.8004.49e-014.44e-014.73e-034.49e-014.67e-011
    1.0003.67e-013.63e-014.29e-033.67e-014.01e-011
     | Show Table
    DownLoad: CSV

    Table .   

    Val of $x$Ex sol $\varphi $Ap sol $\varphi _{T}$Error$_{T}$Ap sol $\varphi _{\alpha \delta }$Error$_{\delta }$
    0.0001.00e+001.00e+000.00e+001.00e+000.00e+00
    0.2009.80e-011.00e+012.15e-029.79e-017.12e-05
    0.4009.21e-019.51e-013.06e-029.20e-011.51e-04
    0.6008.25e-018.60e-013.55e-028.25e-012.26e-04
    0.8006.96e-017.31e-013.52e-026.96e-012.89e-04
    1.0005.40e-015.71e-013.09e-025.39e-013.42e-04
     | Show Table
    DownLoad: CSV

    Table .   

    Val of $x$Ex sol $\varphi $Ap sol $\varphi _{T}$Error$_{T}$Ap sol $\varphi _{\alpha \delta }$Error$_{\delta }$
    0.0001.00e+001.00e+000.00e+001.00e+000.00e+00
    0.2008.35e-018.28e-017.06e-038.35e-011.36e-05
    0.4007.24e-017.19e-015.18e-037.24e-014.52e-05
    0.6006.50e-016.46e-014.01e-036.50e-018.47e-05
    0.8006.00e-015.97e-013.29e-036.00e-011.26e-04
    1.0005.67e-015.64e-012.83e-035.67e-011.66e-04
     | Show Table
    DownLoad: CSV

    Table .   

    Val of $x$Ex sol $\varphi $Ap sol $\varphi _{T}$Error$_{T}$Ap sol $\varphi _{\alpha \delta }$Error$_{\delta }$
    0.0000.00e+00NaNNaN0.00e+000.00e+00
    0.200-1.81e-01NaNNaN-1.84e-013.51e-03
    0.400-3.29e-01NaNNaN-3.32e-012.83e-03
    0.600-4.51e-01NaNNaN-4.53e-012.62e-03
    0.800-5.50e-01NaNNaN-5.53e-012.65e-03
    1.000-6.32e-01NaNNaN-6.35e-012.91e-03
     | Show Table
    DownLoad: CSV
  • [1] H. Brunner, Discretization of Volterra integral equations of the first kind, Mathematics of Computation, 31 (1977), 708-716.  doi: 10.2307/2006002.
    [2] J. KumarP. Manchanda and Pooja, Numerical solution of Fredholm integral equations of the first kind using Legendre wavelets collocation method, International Journal of Pure and Applied Mathematics, 117 (2017), 33-43. 
    [3] Hui Liang, The fine error estimation of collocation methods on uniform meshes for weakly singular volterra integral equations, Scientific Computing, 84 (2020), Article number: 12. doi: 10.1007/s10915-020-01266-1.
    [4] P. K. Lamm, A survey of regularization methods for first-kind volterra equations, Editors Springer (Vienna, New York), (2000), 53-82.
    [5] Pin Lyu and S. Vang, A high-order method with a temporal nonuniform mesh for a timefractional Benjamin-Bona-Mahony equation, J. Sci. Comput., 80 (2019), 1607-1628.  doi: 10.1007/s10915-019-00991-6.
    [6] K. MaleknejadM. T. Kajani and Y. Mahmoudi, Numerical solution of linear Fredholm and Volterra integral equations of the second kind using Legendre wavelets, Journal of Sciences, Islamic Republic of Iran, 13 (2002), 161-166. 
    [7] K. MaleknejadM. Roodaki and H. Almasieh, Numerical solution of Volterra integral equations of first kind by using a recursive scheme, Journal of Mathematical Extension, 3 (2009), 113-121. 
    [8] M. Nadir and A. Rahmoune, Modifed method for solving linear Volterra integral equations of the second kind using Simpson's rule, International Journal Mathematical Manuscripts, 1 (2007), 133-140. 
    [9] M. Nadir and N. Djaidja, Approximation method for Volterra integral equation of the first kind, International Journal of Mathematics and Computation, 29 (2018), 67-72.  doi: 10.1093/comjnl/12.4.393.
    [10] N. A. SidorovM. V. Falaleev and D. N. Sidorov, Generalized solutions of Volterra integral equations of the first kind, Bull. Malays. Math. Sci. Soc., 29 (2006), 101-109. 
    [11] Tao Tang, Superconvergence of numerical solutions to weakly singular Volterra integro-di erential equations, Numer. Math., 61 (1992), 373-382.  doi: 10.1007/BF01385515.
  • 加载中

Tables(5)

SHARE

Article Metrics

HTML views(2526) PDF downloads(387) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return