
-
Previous Article
A primal-dual interior point method for $ P_{\ast }\left( \kappa \right) $-HLCP based on a class of parametric kernel functions
- NACO Home
- This Issue
-
Next Article
Comparison between Taylor and perturbed method for Volterra integral equation of the first kind
Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable
Department of Mathematics, Mechanics and Informatics, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Vietnam |
The direct scheme method is applied to construct an asymptotic approximation of any order to a solution of a singularly perturbed optimal problem with scalar state, controlled via a second-order linear ODE and two fixed end points. The error estimates for state and control variables and for the functional are obtained. An illustrative example is given.
References:
[1] |
R. K. Bawa,
Spline based computational technique for linear singularly perturbed boundary value problem, Appl. Math, Comput., 167 (2005), 225-236.
doi: 10.1016/j.amc.2004.06.112. |
[2] |
R. K. Bawa and S. Natesan,
A computational method for self adjoint singular perturbation problems using quintic spline, Int. J. Computers Math. Appl., 50 (2005), 1371-1382.
doi: 10.1016/j.camwa.2005.04.017. |
[3] |
S. V. Belokopytov and M. G. Dmitriev,
Direct scheme in optimal control problems with fast and slow motions, Systems Control Lett., 8 (1986), 129-135.
doi: 10.1016/0167-6911(86)90071-X. |
[4] |
I. P. Boglaev,
A variational difference scheme for a boundary value problem with a small parameter in the highest derivative, USSR Comput. Maths. Math. Phys., 21 (1981), 71-81.
|
[5] |
Y. Boglaev,
On numerical methods for solving singularly perturbed problems, Differ. Uravn., 21 (1985), 1804-1806.
|
[6] |
A. R. Danilin and N. S. Korobitsyna,
Asymptotic estimate for a solution of a singular perturbation optimal control problem on a closed interval under geometric constraints, Proc. Steklov Inst. Math., 285 (2014), 58-67.
doi: 10.1134/s008154381405006x. |
[7] |
A. R. Danilin,
Asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with integral constraint, Proc. Steklov Inst. Math., 291 (2015), 66-76.
doi: 10.1134/s0081543815090059. |
[8] |
W. Eckhaus, Asymptotic Analysis of Singular Perturbations, North-Holland, 1979. |
[9] |
M. V. Fedoryuk, Asymptotic Analysis for Linear Ordinary Differential Equations, Springer-Verlag Berlin Heidelberg, New York, 1993.
doi: 10.1007/978-3-642-58016-1. |
[10] |
M. G. Gasparo and M. Macconi,
Initial-value methods for second order singularly-perturbed boundary value problems, J. Optim. Theory Appl., 6 (1990), 197-210.
doi: 10.1007/BF00939534. |
[11] |
V. Y. Glizer,
Asymptotic solution of a singularly perturbed set of functional-differential equations of Riccati type encountered in the optimal control theory, Nonlinear Diff. Eq. Appl., 5 (1998), 491-515.
doi: 10.1007/s000300050059. |
[12] |
N. T. Hoai,
Asymptotic solution of a singularly perturbed linear-quadratic problem in critical case with cheap control, J. Optim. Theory Appl., 175 (2017), 324-340.
doi: 10.1007/s10957-017-1156-6. |
[13] |
M. K. Kadalbajoo and K. C. Patidar,
A survey of numerical techniques for solving singularly perturbed ordinary differential equations, Appl. Math. Comput., 130 (2002), 457-510.
doi: 10.1016/S0096-3003(01)00112-6. |
[14] |
P. V. Kokotovic, R. E. Jr. O'Malley and P. Sannuti,
Singular perturbations and order reduction in control theory: An overview, Automatica, 12 (1976), 123-132.
doi: 10.1016/0005-1098(76)90076-5. |
[15] |
P. V. Kokotovic, H. K. Khalil and J. O'Reilly, Singular Perturbations Methods in Control: Analysis and Design, SIAM, Philadelphia, 1999.
doi: 10.1137/1.9781611971118. |
[16] |
M. Kopteva and M. Stynes,
Numerical analysis of a singlarly perturbed non-linear reaction-diffusion problem with multiple solution, Appl. Num. Math., 51 (2004), 273-288.
doi: 10.1016/j.apnum.2004.07.001. |
[17] |
M. Kudu and G. M. Amiraliyev,
Finite difference method for a singularly perturbed differential equations with integral boundary condition, Int. J. Math. Comput., 26 (2015), 72-79.
|
[18] |
G. A. Kurina and M. G. Dmitriev,
Singular perturbations in control problems, Autom. Remote Control, 67 (2006), 1-43.
doi: 10.1134/S0005117906010012. |
[19] |
G. A. Kurina, M. G. Dmitriev and D. S. Naidu,
Discrete singularly perturbed control problems (A Survey), Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 24 (2017), 335-370.
|
[20] |
G. A. Kurina and E. V. Smirnova,
Asymptotics of solutions of optimal control problems with intermediate points in quality criterion and small parameters, J. Math. Sci., 170 (2010), 192-228.
doi: 10.1007/s10958-010-0080-1. |
[21] |
G. A. Kurina and T. H. Nguyen,
Asymptotic solution of singularly perturbed linear-quadratic optimal control problems with discontinuous coefficients, Comput. Math. Math. Phys., 52 (2012), 524-547.
doi: 10.1134/S0965542512040100. |
[22] |
G. A. Kurina and T. H. Nguyen,
Asymptotic solution of singularly perturbed linear-quadratic optimal control problems with discontinuous coefficients, Comput. Math. Math. Phys., 52 (2012), 628-652.
doi: 10.1134/S0965542512040100. |
[23] |
R. K. Mohanty and U. Arora,
A family of non-uniform mesh tension spline methods for singularly perturbed two-point singular boundary value problem with significant first derivatives, Appl. Math. Comput., 172 (2006), 531-544.
doi: 10.1016/j.amc.2005.02.023. |
[24] |
J. Mohapatra and N. R. Reddy,
Exponentially fitted finite difference scheme for singularly perturbed two point boundary value problems, Int. J. Appl. Comput. Math., 1 (2015), 267-278.
doi: 10.1007/s40819-014-0008-4. |
[25] |
N. N. Moiseev and F. L. Chernousko,
Asymptotic methods in the theory of optimal control, IEEE Trans. Automat. Control, 26 (1981), 993-1000.
doi: 10.1109/TAC.1981.1102773. |
[26] |
N. N. Moiseev, Asymptotic Methods for Nonlinear Mechanics, Nauka, Moscow, 1983 (in Russian). |
[27] |
M. Mumar, P. Singh and H. K. Mishra,
A recent survey on computational techniques for solving singularly perturbed boundary value problem, Int. J. Computer Math., 84 (2007), 1439-1463.
doi: 10.1080/00207160701295712. |
[28] |
S. Natesan and N. Ramanujam,
'Shooting method' for the solution of singularly perturbed two-point boundary value problems having less severe boundary layer, Appl. Math. Comput., 133 (2020), 623-641.
doi: 10.1016/S0096-3003(01)00263-6. |
[29] |
R. E. O'Malley, Jr., Singular Perturbations Methods for Ordinary Differential Equations, Springer-Verlag Berlin Heidelberg, New York, 1991.
doi: 10.1007/978-1-4612-0977-5. |
[30] |
S. M. Roberts,
A boundary value technique for singular perturbation problems, J. Math. Anal. Appl., 87 (1982), 489-508.
doi: 10.1016/0022-247X(82)90139-1. |
[31] |
H. G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion and Flow Problems, Springer-Verlag Berlin Heidelberg, New York, 1994.
doi: 10.1007/978-3-662-03206-0. |
[32] |
V. R. Saksena, J. O'Reilly and P. V. Kokotovic,
Singular perturbations and time-scale methods in control theory: A Survey 1976-1983, Automatica, 20 (1984), 273-293.
doi: 10.1016/0005-1098(84)90044-X. |
[33] |
M. Stojanovic,
Global convergence method for singularly perturbed boundary value problem, J. Comput. Appl. Math., 181 (2005), 326-335.
doi: 10.1016/j.cam.2004.12.006. |
[34] |
K. Surla and Z. Uzelac,
A unformly accurate spline collocation method for a normalized flux, J. Comput. Appl. Math., 166 (2004), 291-305.
doi: 10.1016/j.cam.2003.09.021. |
[35] |
T. Valanarasu and N. Ramanujam,
Asymptotic initial-value method for singularly-perturbed boundary problems for second-order ordinary differential equations, J. Optim. Theory Appl., 116 (2003), 167-182.
doi: 10.1023/A:1022118420907. |
[36] |
T. Valanarasu and N. Ramanujam,
An asymptotic initial value method for second order singular perturbation problems of convection-diffusion type with a discontinuous source term, J. Appl. Math. Computing, 23 (2007), 141-152.
doi: 10.1007/BF02831964. |
[37] |
A. B. Vasil'eva and V. F. Butuzov, Asymptotic Expansions of Solutions of Singularly Perturbed Equations, Nauka, Moscow, 1973 (in Russian). |
[38] |
A. B. Vasil'eva, V. F. Butuzov and L. V. Kalachev, The Boundary Function Method for Singular Perturbation Problems, SIAM. Studies in Applied Mathematics, Philadelphia, 1995.
doi: 10.1137/1.9781611970784. |
[39] |
J. Vigo-Aguiar, S. Natesan and N. Ramanujam,
A numerical algorithm for singular perturbation problems exhibiting weak boundary layers, Int. J. Computers Math. Appl., 45 (2003), 469-479.
doi: 10.1016/S0898-1221(03)80031-7. |
[40] |
L. Wang,
A novel method for a class of non-linear singular perturbation problems, Appl. Math. Comput., 156 (2004), 847-856.
doi: 10.1016/j.amc.2003.06.010. |
show all references
References:
[1] |
R. K. Bawa,
Spline based computational technique for linear singularly perturbed boundary value problem, Appl. Math, Comput., 167 (2005), 225-236.
doi: 10.1016/j.amc.2004.06.112. |
[2] |
R. K. Bawa and S. Natesan,
A computational method for self adjoint singular perturbation problems using quintic spline, Int. J. Computers Math. Appl., 50 (2005), 1371-1382.
doi: 10.1016/j.camwa.2005.04.017. |
[3] |
S. V. Belokopytov and M. G. Dmitriev,
Direct scheme in optimal control problems with fast and slow motions, Systems Control Lett., 8 (1986), 129-135.
doi: 10.1016/0167-6911(86)90071-X. |
[4] |
I. P. Boglaev,
A variational difference scheme for a boundary value problem with a small parameter in the highest derivative, USSR Comput. Maths. Math. Phys., 21 (1981), 71-81.
|
[5] |
Y. Boglaev,
On numerical methods for solving singularly perturbed problems, Differ. Uravn., 21 (1985), 1804-1806.
|
[6] |
A. R. Danilin and N. S. Korobitsyna,
Asymptotic estimate for a solution of a singular perturbation optimal control problem on a closed interval under geometric constraints, Proc. Steklov Inst. Math., 285 (2014), 58-67.
doi: 10.1134/s008154381405006x. |
[7] |
A. R. Danilin,
Asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with integral constraint, Proc. Steklov Inst. Math., 291 (2015), 66-76.
doi: 10.1134/s0081543815090059. |
[8] |
W. Eckhaus, Asymptotic Analysis of Singular Perturbations, North-Holland, 1979. |
[9] |
M. V. Fedoryuk, Asymptotic Analysis for Linear Ordinary Differential Equations, Springer-Verlag Berlin Heidelberg, New York, 1993.
doi: 10.1007/978-3-642-58016-1. |
[10] |
M. G. Gasparo and M. Macconi,
Initial-value methods for second order singularly-perturbed boundary value problems, J. Optim. Theory Appl., 6 (1990), 197-210.
doi: 10.1007/BF00939534. |
[11] |
V. Y. Glizer,
Asymptotic solution of a singularly perturbed set of functional-differential equations of Riccati type encountered in the optimal control theory, Nonlinear Diff. Eq. Appl., 5 (1998), 491-515.
doi: 10.1007/s000300050059. |
[12] |
N. T. Hoai,
Asymptotic solution of a singularly perturbed linear-quadratic problem in critical case with cheap control, J. Optim. Theory Appl., 175 (2017), 324-340.
doi: 10.1007/s10957-017-1156-6. |
[13] |
M. K. Kadalbajoo and K. C. Patidar,
A survey of numerical techniques for solving singularly perturbed ordinary differential equations, Appl. Math. Comput., 130 (2002), 457-510.
doi: 10.1016/S0096-3003(01)00112-6. |
[14] |
P. V. Kokotovic, R. E. Jr. O'Malley and P. Sannuti,
Singular perturbations and order reduction in control theory: An overview, Automatica, 12 (1976), 123-132.
doi: 10.1016/0005-1098(76)90076-5. |
[15] |
P. V. Kokotovic, H. K. Khalil and J. O'Reilly, Singular Perturbations Methods in Control: Analysis and Design, SIAM, Philadelphia, 1999.
doi: 10.1137/1.9781611971118. |
[16] |
M. Kopteva and M. Stynes,
Numerical analysis of a singlarly perturbed non-linear reaction-diffusion problem with multiple solution, Appl. Num. Math., 51 (2004), 273-288.
doi: 10.1016/j.apnum.2004.07.001. |
[17] |
M. Kudu and G. M. Amiraliyev,
Finite difference method for a singularly perturbed differential equations with integral boundary condition, Int. J. Math. Comput., 26 (2015), 72-79.
|
[18] |
G. A. Kurina and M. G. Dmitriev,
Singular perturbations in control problems, Autom. Remote Control, 67 (2006), 1-43.
doi: 10.1134/S0005117906010012. |
[19] |
G. A. Kurina, M. G. Dmitriev and D. S. Naidu,
Discrete singularly perturbed control problems (A Survey), Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 24 (2017), 335-370.
|
[20] |
G. A. Kurina and E. V. Smirnova,
Asymptotics of solutions of optimal control problems with intermediate points in quality criterion and small parameters, J. Math. Sci., 170 (2010), 192-228.
doi: 10.1007/s10958-010-0080-1. |
[21] |
G. A. Kurina and T. H. Nguyen,
Asymptotic solution of singularly perturbed linear-quadratic optimal control problems with discontinuous coefficients, Comput. Math. Math. Phys., 52 (2012), 524-547.
doi: 10.1134/S0965542512040100. |
[22] |
G. A. Kurina and T. H. Nguyen,
Asymptotic solution of singularly perturbed linear-quadratic optimal control problems with discontinuous coefficients, Comput. Math. Math. Phys., 52 (2012), 628-652.
doi: 10.1134/S0965542512040100. |
[23] |
R. K. Mohanty and U. Arora,
A family of non-uniform mesh tension spline methods for singularly perturbed two-point singular boundary value problem with significant first derivatives, Appl. Math. Comput., 172 (2006), 531-544.
doi: 10.1016/j.amc.2005.02.023. |
[24] |
J. Mohapatra and N. R. Reddy,
Exponentially fitted finite difference scheme for singularly perturbed two point boundary value problems, Int. J. Appl. Comput. Math., 1 (2015), 267-278.
doi: 10.1007/s40819-014-0008-4. |
[25] |
N. N. Moiseev and F. L. Chernousko,
Asymptotic methods in the theory of optimal control, IEEE Trans. Automat. Control, 26 (1981), 993-1000.
doi: 10.1109/TAC.1981.1102773. |
[26] |
N. N. Moiseev, Asymptotic Methods for Nonlinear Mechanics, Nauka, Moscow, 1983 (in Russian). |
[27] |
M. Mumar, P. Singh and H. K. Mishra,
A recent survey on computational techniques for solving singularly perturbed boundary value problem, Int. J. Computer Math., 84 (2007), 1439-1463.
doi: 10.1080/00207160701295712. |
[28] |
S. Natesan and N. Ramanujam,
'Shooting method' for the solution of singularly perturbed two-point boundary value problems having less severe boundary layer, Appl. Math. Comput., 133 (2020), 623-641.
doi: 10.1016/S0096-3003(01)00263-6. |
[29] |
R. E. O'Malley, Jr., Singular Perturbations Methods for Ordinary Differential Equations, Springer-Verlag Berlin Heidelberg, New York, 1991.
doi: 10.1007/978-1-4612-0977-5. |
[30] |
S. M. Roberts,
A boundary value technique for singular perturbation problems, J. Math. Anal. Appl., 87 (1982), 489-508.
doi: 10.1016/0022-247X(82)90139-1. |
[31] |
H. G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion and Flow Problems, Springer-Verlag Berlin Heidelberg, New York, 1994.
doi: 10.1007/978-3-662-03206-0. |
[32] |
V. R. Saksena, J. O'Reilly and P. V. Kokotovic,
Singular perturbations and time-scale methods in control theory: A Survey 1976-1983, Automatica, 20 (1984), 273-293.
doi: 10.1016/0005-1098(84)90044-X. |
[33] |
M. Stojanovic,
Global convergence method for singularly perturbed boundary value problem, J. Comput. Appl. Math., 181 (2005), 326-335.
doi: 10.1016/j.cam.2004.12.006. |
[34] |
K. Surla and Z. Uzelac,
A unformly accurate spline collocation method for a normalized flux, J. Comput. Appl. Math., 166 (2004), 291-305.
doi: 10.1016/j.cam.2003.09.021. |
[35] |
T. Valanarasu and N. Ramanujam,
Asymptotic initial-value method for singularly-perturbed boundary problems for second-order ordinary differential equations, J. Optim. Theory Appl., 116 (2003), 167-182.
doi: 10.1023/A:1022118420907. |
[36] |
T. Valanarasu and N. Ramanujam,
An asymptotic initial value method for second order singular perturbation problems of convection-diffusion type with a discontinuous source term, J. Appl. Math. Computing, 23 (2007), 141-152.
doi: 10.1007/BF02831964. |
[37] |
A. B. Vasil'eva and V. F. Butuzov, Asymptotic Expansions of Solutions of Singularly Perturbed Equations, Nauka, Moscow, 1973 (in Russian). |
[38] |
A. B. Vasil'eva, V. F. Butuzov and L. V. Kalachev, The Boundary Function Method for Singular Perturbation Problems, SIAM. Studies in Applied Mathematics, Philadelphia, 1995.
doi: 10.1137/1.9781611970784. |
[39] |
J. Vigo-Aguiar, S. Natesan and N. Ramanujam,
A numerical algorithm for singular perturbation problems exhibiting weak boundary layers, Int. J. Computers Math. Appl., 45 (2003), 469-479.
doi: 10.1016/S0898-1221(03)80031-7. |
[40] |
L. Wang,
A novel method for a class of non-linear singular perturbation problems, Appl. Math. Comput., 156 (2004), 847-856.
doi: 10.1016/j.amc.2003.06.010. |


0.1 | 0.11594 | 0.11240 | 0.11020 | 0.11013 |
0.2 | 0.16038 | 0.15884 | 0.15330 | 0.15266 |
0.1 | 0.11594 | 0.11240 | 0.11020 | 0.11013 |
0.2 | 0.16038 | 0.15884 | 0.15330 | 0.15266 |
[1] |
Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581 |
[2] |
Yi Zhang, Yong Jiang, Liwei Zhang, Jiangzhong Zhang. A perturbation approach for an inverse linear second-order cone programming. Journal of Industrial and Management Optimization, 2013, 9 (1) : 171-189. doi: 10.3934/jimo.2013.9.171 |
[3] |
Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control and Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018 |
[4] |
Qingsong Duan, Mengwei Xu, Liwei Zhang, Sainan Zhang. Hadamard directional differentiability of the optimal value of a linear second-order conic programming problem. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3085-3098. doi: 10.3934/jimo.2020108 |
[5] |
Walter Allegretto, Liqun Cao, Yanping Lin. Multiscale asymptotic expansion for second order parabolic equations with rapidly oscillating coefficients. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 543-576. doi: 10.3934/dcds.2008.20.543 |
[6] |
Raegan Higgins. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 609-622. doi: 10.3934/dcdsb.2010.13.609 |
[7] |
Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064 |
[8] |
Qilin Wang, Shengji Li, Kok Lay Teo. Continuity of second-order adjacent derivatives for weak perturbation maps in vector optimization. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 417-433. doi: 10.3934/naco.2011.1.417 |
[9] |
Xiaoni Chi, Zhongping Wan, Zijun Hao. Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1111-1125. doi: 10.3934/jimo.2015.11.1111 |
[10] |
Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747 |
[11] |
Dohyun Kim. Asymptotic behavior of a second-order swarm sphere model and its kinetic limit. Kinetic and Related Models, 2020, 13 (2) : 401-434. doi: 10.3934/krm.2020014 |
[12] |
Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929 |
[13] |
Hongwei Lou, Jiongmin Yong. Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls. Mathematical Control and Related Fields, 2018, 8 (1) : 57-88. doi: 10.3934/mcrf.2018003 |
[14] |
Hongwei Lou. Second-order necessary/sufficient conditions for optimal control problems in the absence of linear structure. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1445-1464. doi: 10.3934/dcdsb.2010.14.1445 |
[15] |
Leonardo Colombo. Second-order constrained variational problems on Lie algebroids: Applications to Optimal Control. Journal of Geometric Mechanics, 2017, 9 (1) : 1-45. doi: 10.3934/jgm.2017001 |
[16] |
Kaizhi Wang, Yong Li. Existence and monotonicity property of minimizers of a nonconvex variational problem with a second-order Lagrangian. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 687-699. doi: 10.3934/dcds.2009.25.687 |
[17] |
Soumia Saïdi. On a second-order functional evolution problem with time and state dependent maximal monotone operators. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021034 |
[18] |
Y. Peng, X. Xiang. Second order nonlinear impulsive time-variant systems with unbounded perturbation and optimal controls. Journal of Industrial and Management Optimization, 2008, 4 (1) : 17-32. doi: 10.3934/jimo.2008.4.17 |
[19] |
José F. Cariñena, Javier de Lucas Araujo. Superposition rules and second-order Riccati equations. Journal of Geometric Mechanics, 2011, 3 (1) : 1-22. doi: 10.3934/jgm.2011.3.1 |
[20] |
Eugenii Shustin, Emilia Fridman, Leonid Fridman. Oscillations in a second-order discontinuous system with delay. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 339-358. doi: 10.3934/dcds.2003.9.339 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]