doi: 10.3934/naco.2020040

Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable

Department of Mathematics, Mechanics and Informatics, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Vietnam

Received  May 2020 Revised  September 2020 Published  September 2020

The direct scheme method is applied to construct an asymptotic approximation of any order to a solution of a singularly perturbed optimal problem with scalar state, controlled via a second-order linear ODE and two fixed end points. The error estimates for state and control variables and for the functional are obtained. An illustrative example is given.

Citation: Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control & Optimization, doi: 10.3934/naco.2020040
References:
[1]

R. K. Bawa, Spline based computational technique for linear singularly perturbed boundary value problem, Appl. Math, Comput., 167 (2005), 225-236.  doi: 10.1016/j.amc.2004.06.112.  Google Scholar

[2]

R. K. Bawa and S. Natesan, A computational method for self adjoint singular perturbation problems using quintic spline, Int. J. Computers Math. Appl., 50 (2005), 1371-1382.  doi: 10.1016/j.camwa.2005.04.017.  Google Scholar

[3]

S. V. Belokopytov and M. G. Dmitriev, Direct scheme in optimal control problems with fast and slow motions, Systems Control Lett., 8 (1986), 129-135.  doi: 10.1016/0167-6911(86)90071-X.  Google Scholar

[4]

I. P. Boglaev, A variational difference scheme for a boundary value problem with a small parameter in the highest derivative, USSR Comput. Maths. Math. Phys., 21 (1981), 71-81.   Google Scholar

[5]

Y. Boglaev, On numerical methods for solving singularly perturbed problems, Differ. Uravn., 21 (1985), 1804-1806.   Google Scholar

[6]

A. R. Danilin and N. S. Korobitsyna, Asymptotic estimate for a solution of a singular perturbation optimal control problem on a closed interval under geometric constraints, Proc. Steklov Inst. Math., 285 (2014), 58-67.  doi: 10.1134/s008154381405006x.  Google Scholar

[7]

A. R. Danilin, Asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with integral constraint, Proc. Steklov Inst. Math., 291 (2015), 66-76.  doi: 10.1134/s0081543815090059.  Google Scholar

[8]

W. Eckhaus, Asymptotic Analysis of Singular Perturbations, North-Holland, 1979.  Google Scholar

[9]

M. V. Fedoryuk, Asymptotic Analysis for Linear Ordinary Differential Equations, Springer-Verlag Berlin Heidelberg, New York, 1993. doi: 10.1007/978-3-642-58016-1.  Google Scholar

[10]

M. G. Gasparo and M. Macconi, Initial-value methods for second order singularly-perturbed boundary value problems, J. Optim. Theory Appl., 6 (1990), 197-210.  doi: 10.1007/BF00939534.  Google Scholar

[11]

V. Y. Glizer, Asymptotic solution of a singularly perturbed set of functional-differential equations of Riccati type encountered in the optimal control theory, Nonlinear Diff. Eq. Appl., 5 (1998), 491-515.  doi: 10.1007/s000300050059.  Google Scholar

[12]

N. T. Hoai, Asymptotic solution of a singularly perturbed linear-quadratic problem in critical case with cheap control, J. Optim. Theory Appl., 175 (2017), 324-340.  doi: 10.1007/s10957-017-1156-6.  Google Scholar

[13]

M. K. Kadalbajoo and K. C. Patidar, A survey of numerical techniques for solving singularly perturbed ordinary differential equations, Appl. Math. Comput., 130 (2002), 457-510.  doi: 10.1016/S0096-3003(01)00112-6.  Google Scholar

[14]

P. V. KokotovicR. E. Jr. O'Malley and P. Sannuti, Singular perturbations and order reduction in control theory: An overview, Automatica, 12 (1976), 123-132.  doi: 10.1016/0005-1098(76)90076-5.  Google Scholar

[15]

P. V. Kokotovic, H. K. Khalil and J. O'Reilly, Singular Perturbations Methods in Control: Analysis and Design, SIAM, Philadelphia, 1999. doi: 10.1137/1.9781611971118.  Google Scholar

[16]

M. Kopteva and M. Stynes, Numerical analysis of a singlarly perturbed non-linear reaction-diffusion problem with multiple solution, Appl. Num. Math., 51 (2004), 273-288.  doi: 10.1016/j.apnum.2004.07.001.  Google Scholar

[17]

M. Kudu and G. M. Amiraliyev, Finite difference method for a singularly perturbed differential equations with integral boundary condition, Int. J. Math. Comput., 26 (2015), 72-79.   Google Scholar

[18]

G. A. Kurina and M. G. Dmitriev, Singular perturbations in control problems, Autom. Remote Control, 67 (2006), 1-43.  doi: 10.1134/S0005117906010012.  Google Scholar

[19]

G. A. KurinaM. G. Dmitriev and D. S. Naidu, Discrete singularly perturbed control problems (A Survey), Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 24 (2017), 335-370.   Google Scholar

[20]

G. A. Kurina and E. V. Smirnova, Asymptotics of solutions of optimal control problems with intermediate points in quality criterion and small parameters, J. Math. Sci., 170 (2010), 192-228.  doi: 10.1007/s10958-010-0080-1.  Google Scholar

[21]

G. A. Kurina and T. H. Nguyen, Asymptotic solution of singularly perturbed linear-quadratic optimal control problems with discontinuous coefficients, Comput. Math. Math. Phys., 52 (2012), 524-547.  doi: 10.1134/S0965542512040100.  Google Scholar

[22]

G. A. Kurina and T. H. Nguyen, Asymptotic solution of singularly perturbed linear-quadratic optimal control problems with discontinuous coefficients, Comput. Math. Math. Phys., 52 (2012), 628-652.  doi: 10.1134/S0965542512040100.  Google Scholar

[23]

R. K. Mohanty and U. Arora, A family of non-uniform mesh tension spline methods for singularly perturbed two-point singular boundary value problem with significant first derivatives, Appl. Math. Comput., 172 (2006), 531-544.  doi: 10.1016/j.amc.2005.02.023.  Google Scholar

[24]

J. Mohapatra and N. R. Reddy, Exponentially fitted finite difference scheme for singularly perturbed two point boundary value problems, Int. J. Appl. Comput. Math., 1 (2015), 267-278.  doi: 10.1007/s40819-014-0008-4.  Google Scholar

[25]

N. N. Moiseev and F. L. Chernousko, Asymptotic methods in the theory of optimal control, IEEE Trans. Automat. Control, 26 (1981), 993-1000.  doi: 10.1109/TAC.1981.1102773.  Google Scholar

[26]

N. N. Moiseev, Asymptotic Methods for Nonlinear Mechanics, Nauka, Moscow, 1983 (in Russian).  Google Scholar

[27]

M. KumarP. Singh and H. K. Mishra, A recent survey on computational techniques for solving singularly perturbed boundary value problem, Int. J. Computer Math., 84 (2007), 1439-1463.  doi: 10.1080/00207160701295712.  Google Scholar

[28]

S. Natesan and N. Ramanujam, 'Shooting method' for the solution of singularly perturbed two-point boundary value problems having less severe boundary layer, Appl. Math. Comput., 133 (2020), 623-641.  doi: 10.1016/S0096-3003(01)00263-6.  Google Scholar

[29]

R. E. O'Malley, Jr., Singular Perturbations Methods for Ordinary Differential Equations, Springer-Verlag Berlin Heidelberg, New York, 1991. doi: 10.1007/978-1-4612-0977-5.  Google Scholar

[30]

S. M. Roberts, A boundary value technique for singular perturbation problems, J. Math. Anal. Appl., 87 (1982), 489-508.  doi: 10.1016/0022-247X(82)90139-1.  Google Scholar

[31]

H. G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion and Flow Problems, Springer-Verlag Berlin Heidelberg, New York, 1994. doi: 10.1007/978-3-662-03206-0.  Google Scholar

[32]

V. R. SaksenaJ. O'Reilly and P. V. Kokotovic, Singular perturbations and time-scale methods in control theory: A Survey 1976-1983, Automatica, 20 (1984), 273-293.  doi: 10.1016/0005-1098(84)90044-X.  Google Scholar

[33]

M. Stojanovic, Global convergence method for singularly perturbed boundary value problem, J. Comput. Appl. Math., 181 (2005), 326-335.  doi: 10.1016/j.cam.2004.12.006.  Google Scholar

[34]

K. Surla and Z. Uzelac, A unformly accurate spline collocation method for a normalized flux, J. Comput. Appl. Math., 166 (2004), 291-305.  doi: 10.1016/j.cam.2003.09.021.  Google Scholar

[35]

T. Valanarasu and N. Ramanujam, Asymptotic initial-value method for singularly-perturbed boundary problems for second-order ordinary differential equations, J. Optim. Theory Appl., 116 (2003), 167-182.  doi: 10.1023/A:1022118420907.  Google Scholar

[36]

T. Valanarasu and N. Ramanujam, An asymptotic initial value method for second order singular perturbation problems of convection-diffusion type with a discontinuous source term, J. Appl. Math. Computing, 23 (2007), 141-152.  doi: 10.1007/BF02831964.  Google Scholar

[37]

A. B. Vasil'eva and V. F. Butuzov, Asymptotic Expansions of Solutions of Singularly Perturbed Equations, Nauka, Moscow, 1973 (in Russian).  Google Scholar

[38]

A. B. Vasil'eva, V. F. Butuzov and L. V. Kalachev, The Boundary Function Method for Singular Perturbation Problems, SIAM. Studies in Applied Mathematics, Philadelphia, 1995. doi: 10.1137/1.9781611970784.  Google Scholar

[39]

J. Vigo-AguiarS. Natesan and N. Ramanujam, A numerical algorithm for singular perturbation problems exhibiting weak boundary layers, Int. J. Computers Math. Appl., 45 (2003), 469-479.  doi: 10.1016/S0898-1221(03)80031-7.  Google Scholar

[40]

L. Wang, A novel method for a class of non-linear singular perturbation problems, Appl. Math. Comput., 156 (2004), 847-856.  doi: 10.1016/j.amc.2003.06.010.  Google Scholar

show all references

References:
[1]

R. K. Bawa, Spline based computational technique for linear singularly perturbed boundary value problem, Appl. Math, Comput., 167 (2005), 225-236.  doi: 10.1016/j.amc.2004.06.112.  Google Scholar

[2]

R. K. Bawa and S. Natesan, A computational method for self adjoint singular perturbation problems using quintic spline, Int. J. Computers Math. Appl., 50 (2005), 1371-1382.  doi: 10.1016/j.camwa.2005.04.017.  Google Scholar

[3]

S. V. Belokopytov and M. G. Dmitriev, Direct scheme in optimal control problems with fast and slow motions, Systems Control Lett., 8 (1986), 129-135.  doi: 10.1016/0167-6911(86)90071-X.  Google Scholar

[4]

I. P. Boglaev, A variational difference scheme for a boundary value problem with a small parameter in the highest derivative, USSR Comput. Maths. Math. Phys., 21 (1981), 71-81.   Google Scholar

[5]

Y. Boglaev, On numerical methods for solving singularly perturbed problems, Differ. Uravn., 21 (1985), 1804-1806.   Google Scholar

[6]

A. R. Danilin and N. S. Korobitsyna, Asymptotic estimate for a solution of a singular perturbation optimal control problem on a closed interval under geometric constraints, Proc. Steklov Inst. Math., 285 (2014), 58-67.  doi: 10.1134/s008154381405006x.  Google Scholar

[7]

A. R. Danilin, Asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with integral constraint, Proc. Steklov Inst. Math., 291 (2015), 66-76.  doi: 10.1134/s0081543815090059.  Google Scholar

[8]

W. Eckhaus, Asymptotic Analysis of Singular Perturbations, North-Holland, 1979.  Google Scholar

[9]

M. V. Fedoryuk, Asymptotic Analysis for Linear Ordinary Differential Equations, Springer-Verlag Berlin Heidelberg, New York, 1993. doi: 10.1007/978-3-642-58016-1.  Google Scholar

[10]

M. G. Gasparo and M. Macconi, Initial-value methods for second order singularly-perturbed boundary value problems, J. Optim. Theory Appl., 6 (1990), 197-210.  doi: 10.1007/BF00939534.  Google Scholar

[11]

V. Y. Glizer, Asymptotic solution of a singularly perturbed set of functional-differential equations of Riccati type encountered in the optimal control theory, Nonlinear Diff. Eq. Appl., 5 (1998), 491-515.  doi: 10.1007/s000300050059.  Google Scholar

[12]

N. T. Hoai, Asymptotic solution of a singularly perturbed linear-quadratic problem in critical case with cheap control, J. Optim. Theory Appl., 175 (2017), 324-340.  doi: 10.1007/s10957-017-1156-6.  Google Scholar

[13]

M. K. Kadalbajoo and K. C. Patidar, A survey of numerical techniques for solving singularly perturbed ordinary differential equations, Appl. Math. Comput., 130 (2002), 457-510.  doi: 10.1016/S0096-3003(01)00112-6.  Google Scholar

[14]

P. V. KokotovicR. E. Jr. O'Malley and P. Sannuti, Singular perturbations and order reduction in control theory: An overview, Automatica, 12 (1976), 123-132.  doi: 10.1016/0005-1098(76)90076-5.  Google Scholar

[15]

P. V. Kokotovic, H. K. Khalil and J. O'Reilly, Singular Perturbations Methods in Control: Analysis and Design, SIAM, Philadelphia, 1999. doi: 10.1137/1.9781611971118.  Google Scholar

[16]

M. Kopteva and M. Stynes, Numerical analysis of a singlarly perturbed non-linear reaction-diffusion problem with multiple solution, Appl. Num. Math., 51 (2004), 273-288.  doi: 10.1016/j.apnum.2004.07.001.  Google Scholar

[17]

M. Kudu and G. M. Amiraliyev, Finite difference method for a singularly perturbed differential equations with integral boundary condition, Int. J. Math. Comput., 26 (2015), 72-79.   Google Scholar

[18]

G. A. Kurina and M. G. Dmitriev, Singular perturbations in control problems, Autom. Remote Control, 67 (2006), 1-43.  doi: 10.1134/S0005117906010012.  Google Scholar

[19]

G. A. KurinaM. G. Dmitriev and D. S. Naidu, Discrete singularly perturbed control problems (A Survey), Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 24 (2017), 335-370.   Google Scholar

[20]

G. A. Kurina and E. V. Smirnova, Asymptotics of solutions of optimal control problems with intermediate points in quality criterion and small parameters, J. Math. Sci., 170 (2010), 192-228.  doi: 10.1007/s10958-010-0080-1.  Google Scholar

[21]

G. A. Kurina and T. H. Nguyen, Asymptotic solution of singularly perturbed linear-quadratic optimal control problems with discontinuous coefficients, Comput. Math. Math. Phys., 52 (2012), 524-547.  doi: 10.1134/S0965542512040100.  Google Scholar

[22]

G. A. Kurina and T. H. Nguyen, Asymptotic solution of singularly perturbed linear-quadratic optimal control problems with discontinuous coefficients, Comput. Math. Math. Phys., 52 (2012), 628-652.  doi: 10.1134/S0965542512040100.  Google Scholar

[23]

R. K. Mohanty and U. Arora, A family of non-uniform mesh tension spline methods for singularly perturbed two-point singular boundary value problem with significant first derivatives, Appl. Math. Comput., 172 (2006), 531-544.  doi: 10.1016/j.amc.2005.02.023.  Google Scholar

[24]

J. Mohapatra and N. R. Reddy, Exponentially fitted finite difference scheme for singularly perturbed two point boundary value problems, Int. J. Appl. Comput. Math., 1 (2015), 267-278.  doi: 10.1007/s40819-014-0008-4.  Google Scholar

[25]

N. N. Moiseev and F. L. Chernousko, Asymptotic methods in the theory of optimal control, IEEE Trans. Automat. Control, 26 (1981), 993-1000.  doi: 10.1109/TAC.1981.1102773.  Google Scholar

[26]

N. N. Moiseev, Asymptotic Methods for Nonlinear Mechanics, Nauka, Moscow, 1983 (in Russian).  Google Scholar

[27]

M. KumarP. Singh and H. K. Mishra, A recent survey on computational techniques for solving singularly perturbed boundary value problem, Int. J. Computer Math., 84 (2007), 1439-1463.  doi: 10.1080/00207160701295712.  Google Scholar

[28]

S. Natesan and N. Ramanujam, 'Shooting method' for the solution of singularly perturbed two-point boundary value problems having less severe boundary layer, Appl. Math. Comput., 133 (2020), 623-641.  doi: 10.1016/S0096-3003(01)00263-6.  Google Scholar

[29]

R. E. O'Malley, Jr., Singular Perturbations Methods for Ordinary Differential Equations, Springer-Verlag Berlin Heidelberg, New York, 1991. doi: 10.1007/978-1-4612-0977-5.  Google Scholar

[30]

S. M. Roberts, A boundary value technique for singular perturbation problems, J. Math. Anal. Appl., 87 (1982), 489-508.  doi: 10.1016/0022-247X(82)90139-1.  Google Scholar

[31]

H. G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion and Flow Problems, Springer-Verlag Berlin Heidelberg, New York, 1994. doi: 10.1007/978-3-662-03206-0.  Google Scholar

[32]

V. R. SaksenaJ. O'Reilly and P. V. Kokotovic, Singular perturbations and time-scale methods in control theory: A Survey 1976-1983, Automatica, 20 (1984), 273-293.  doi: 10.1016/0005-1098(84)90044-X.  Google Scholar

[33]

M. Stojanovic, Global convergence method for singularly perturbed boundary value problem, J. Comput. Appl. Math., 181 (2005), 326-335.  doi: 10.1016/j.cam.2004.12.006.  Google Scholar

[34]

K. Surla and Z. Uzelac, A unformly accurate spline collocation method for a normalized flux, J. Comput. Appl. Math., 166 (2004), 291-305.  doi: 10.1016/j.cam.2003.09.021.  Google Scholar

[35]

T. Valanarasu and N. Ramanujam, Asymptotic initial-value method for singularly-perturbed boundary problems for second-order ordinary differential equations, J. Optim. Theory Appl., 116 (2003), 167-182.  doi: 10.1023/A:1022118420907.  Google Scholar

[36]

T. Valanarasu and N. Ramanujam, An asymptotic initial value method for second order singular perturbation problems of convection-diffusion type with a discontinuous source term, J. Appl. Math. Computing, 23 (2007), 141-152.  doi: 10.1007/BF02831964.  Google Scholar

[37]

A. B. Vasil'eva and V. F. Butuzov, Asymptotic Expansions of Solutions of Singularly Perturbed Equations, Nauka, Moscow, 1973 (in Russian).  Google Scholar

[38]

A. B. Vasil'eva, V. F. Butuzov and L. V. Kalachev, The Boundary Function Method for Singular Perturbation Problems, SIAM. Studies in Applied Mathematics, Philadelphia, 1995. doi: 10.1137/1.9781611970784.  Google Scholar

[39]

J. Vigo-AguiarS. Natesan and N. Ramanujam, A numerical algorithm for singular perturbation problems exhibiting weak boundary layers, Int. J. Computers Math. Appl., 45 (2003), 469-479.  doi: 10.1016/S0898-1221(03)80031-7.  Google Scholar

[40]

L. Wang, A novel method for a class of non-linear singular perturbation problems, Appl. Math. Comput., 156 (2004), 847-856.  doi: 10.1016/j.amc.2003.06.010.  Google Scholar

Figure 1.  The graph of $ x(t,\varepsilon) $ and its approximations
Figure 2.  The graph of $ u(t,\varepsilon) $ and its approximations
Table 1.  Table of values of performance index
$ \varepsilon $ $ \;\;J_{\varepsilon}(\overline{u}_{0})\;\; $ $ \;\;J_{\varepsilon}(\widetilde{u}_{0})\;\; $ $ \;\;J_{\varepsilon}(\widetilde{u}_{1})\;\; $ $ \;\;J_{\varepsilon}(u)\;\; $
0.1 0.11594 0.11240 0.11020 0.11013
0.2 0.16038 0.15884 0.15330 0.15266
$ \varepsilon $ $ \;\;J_{\varepsilon}(\overline{u}_{0})\;\; $ $ \;\;J_{\varepsilon}(\widetilde{u}_{0})\;\; $ $ \;\;J_{\varepsilon}(\widetilde{u}_{1})\;\; $ $ \;\;J_{\varepsilon}(u)\;\; $
0.1 0.11594 0.11240 0.11020 0.11013
0.2 0.16038 0.15884 0.15330 0.15266
[1]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[2]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[3]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[4]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, 2021, 20 (2) : 533-545. doi: 10.3934/cpaa.2020279

[5]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[6]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[7]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[8]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[9]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[10]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[11]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[12]

Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008

[13]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[14]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[15]

Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170

[16]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[17]

Makram Hamouda, Ahmed Bchatnia, Mohamed Ali Ayadi. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021001

[18]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[19]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[20]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]