Algorithm 1: |
1: Compute the QL factorization of $ \mathbf{A} $: $ \mathbf{H}_n\cdots \mathbf{H}_1 \mathbf{A}= \begin{bmatrix} {\boldsymbol{0}} \mathbf{L}_{ \mathbf{A}} \end{bmatrix} $ 2: Compute $ \bar {\boldsymbol{\Sigma}}= \mathbf{H}_1\cdots \mathbf{H}_n {\boldsymbol{\Sigma}} \mathbf{H}_n\cdots \mathbf{H}_1 $ 3: Compute $ \tilde {\mathbf{y}} = \mathbf{H}_1\cdots \mathbf{H}_n {\mathbf{y}} $ 4: Compute the Cholesky factorization of $ \bar {\boldsymbol{\Sigma}} $: $ \bar {\boldsymbol{\Sigma}}= \mathbf{L} \mathbf{L}^ {\mkern-1.5mu\mathsf{T}} $ 5: Solve $ \mathbf{L}(1\!:\!n,1\!:\!n) {\mathbf{z}}_1 = \tilde {\mathbf{y}}(1\!:\!n) $ for $ {\mathbf{z}}_1 $ 6: Solve $ \mathbf{L}_{ \mathbf{A}} {\hat{\mathbf{x}}}=\tilde {\mathbf{y}}(n+1:m)- \mathbf{L}(n+1\!:\!m,1\!:\!n) {\mathbf{z}}_1 $ for $ {\hat{\mathbf{x}}} $ |