[1]
|
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends® in Machine Learning, 3 (2011), 1–122.
doi: 10.1561/2200000016.
|
[2]
|
A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision, 40 (2011), 120-145.
doi: 10.1007/s10851-010-0251-1.
|
[3]
|
W. Deng and W. Yin, On the global and linear convergence of the generalized alternating direction method of multipliers, Journal of Scientific Computing, 66 (2016), 889-916.
doi: 10.1007/s10915-015-0048-x.
|
[4]
|
J. Eckstein, Some saddle-function splitting methods for convex programming, Optimization Methods and Software, 4 (1994), 75-83.
doi: 10.1080/10556789408805578.
|
[5]
|
J. Eckstein and D. P. Bertsekas, On the douglas-rachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming, 55 (1992), 293-318.
doi: 10.1007/BF01581204.
|
[6]
|
J. Eckstein and W. Yao, Relative-error approximate versions of Douglas–Rachford splitting and special cases of the ADMM, Mathematical Programming, 170 (2018), 417-444.
doi: 10.1007/s10107-017-1160-5.
|
[7]
|
M. Fazel, T. K. Pong, D. Sun and P. Tseng, Hankel matrix rank minimization with applications to system identification and realization, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 946-977.
doi: 10.1137/110853996.
|
[8]
|
M. Fortin and R. Glowinski, Chapter ⅲ on decomposition-coordination methods using an augmented lagrangian, in Studies in Mathematics and Its Applications, vol. 15, Elsevier, (1983), 97–146.
doi: 10.1016/S0168-2024(08)70028-6.
|
[9]
|
D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Computers and Mathematics with Applications, 2 (1976), 17-40.
doi: 10.1016/0898-1221(76)90003-1.
|
[10]
|
B. Gao and F. Ma, Symmetric alternating direction method with indefinite proximal regularization for linearly constrained convex optimization, Journal of Optimization Theory and Applications, 176 (2018), 178-204.
doi: 10.1007/s10957-017-1207-z.
|
[11]
|
R. Glowinski and A. Marroco, Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de dirichlet non linéaires, ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, 9 (1975), 41–76.
doi: 10.1051/m2an/197509R200411.
|
[12]
|
M. L. N. Gonçalves, M. M. Alves and J. G. Melo, Pointwise and ergodic convergence rates of a variable metric proximal alternating direction method of multipliers, Journal of Optimization Theory and Applications, 177 (2018), 448-478.
doi: 10.1007/s10957-018-1232-6.
|
[13]
|
Y. Gu and N. Yamashita, An alternating direction method of multipliers with the BFGS update for structured convex quadratic optimization, preprint, arXiv: 1903.02270.
|
[14]
|
Y. Gu and N. Yamashita, A proximal ADMM with the Broyden family for convex optimization problems, Journal of Industrial and Management Optimization, 13 (2020).
doi: 10.3934/jimo.2020091.
|
[15]
|
D. Harrison Jr and D. L. Rubinfeld, Hedonic housing prices and the demand for clean air, Journal of Environmental Economics and Management, 5 (1978), 81-102.
doi: 10.1016/0095-0696(78)90006-2.
|
[16]
|
B. He, L.-Z. Liao, D. Han and H. Yang, A new inexact alternating directions method for monotone variational inequalities, Mathematical Programming, 92 (2002), 103-118.
doi: 10.1007/s101070100280.
|
[17]
|
B. He, H. Liu, Z. Wang and X. Yuan, A strictly contractive Peaceman–Rachford splitting method for convex programming, SIAM Journal on Optimization, 24 (2014), 1011-1040.
doi: 10.1137/13090849X.
|
[18]
|
B. He and X. Yuan, On the $O(1/n)$ convergence rate of the Douglas-Rachford alternating direction method, SIAM Journal on Numerical Analysis, 50 (2012), 700-709.
doi: 10.1137/110836936.
|
[19]
|
B. He and X. Yuan, Block-wise alternating direction method of multipliers for multiple-block convex programming and beyond, SMAI Journal of Computational Mathematics, 1 (2015), 145-174.
doi: 10.5802/smai-jcm.6.
|
[20]
|
B. He, F. Ma and X. Yuan, Optimally linearizing the alternating direction method of multipliers for convex programming, Computational Optimization and Applications, (2019), 1–28.
doi: 10.1007/s10589-019-00152-3.
|
[21]
|
K. Koh, S.-J. Kim and S. Boyd, An interior-point method for large-scale l1-regularized logistic regression, Journal of Machine Learning Research, 8 (2007), 1519-1555.
doi: 10.1109/JSTSP.2007.910971.
|
[22]
|
M. Li, D. Sun and K.-C. Toh, A majorized admm with indefinite proximal terms for linearly constrained convex composite optimization, SIAM Journal on Optimization, 26 (2016), 922-950.
doi: 10.1137/140999025.
|
[23]
|
P.-L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM Journal on Numerical Analysis, 16 (1979), 964-979.
doi: 10.1137/0716071.
|
[24]
|
P. A. Lotito, L. A. Parente and M. Solodov, A class of variable metric decomposition methods for monotone variational inclusions, Journal of Convex Analysis, 16 (2009), 857-880.
|
[25]
|
Y. Nesterov, Gradient methods for minimizing composite functions, Mathematical Programming, 140 (2013), 125-161.
doi: 10.1007/s10107-012-0629-5.
|
[26]
|
R. K. Pace and R. Barry, Sparse spatial autoregressions, Statistics and Probability Letters, 33 (1997), 291-297.
doi: 10.1016/S0167-7152(96)00140-X.
|
[27]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[28]
|
H. Trevor, T. Robert and F. JH, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Science and Business Media, 2009.
|
[29]
|
P. Tseng and S. Yun, A coordinate gradient descent method for nonsmooth separable minimization, Mathematical Programming, 117 (2009), 387-423.
doi: 10.1007/s10107-007-0170-0.
|
[30]
|
M. Xu, Proximal alternating directions method for structured variational inequalities, Journal of Optimization Theory and Applications, 134 (2007), 107-117.
doi: 10.1007/s10957-007-9192-2.
|
[31]
|
M. Xu and T. Wu, A class of linearized proximal alternating direction methods, Journal of Optimization Theory and Applications, 151 (2011), 321-337.
doi: 10.1007/s10957-011-9876-5.
|
[32]
|
W. Yin, S. Osher, D. Goldfarb and J. Darbon, Bregman iterative algorithms for $l_1$-minimization with applications to compressed sensing, SIAM Journal on Imaging Sciences, 1 (2008), 143-168.
doi: 10.1137/070703983.
|