• Previous Article
    Two-stage stochastic variational inequalities for Cournot-Nash equilibrium with risk-averse players under uncertainty
  • NACO Home
  • This Issue
  • Next Article
    Alternating direction method of multipliers with variable metric indefinite proximal terms for convex optimization
December  2020, 10(4): 511-520. doi: 10.3934/naco.2020048

Parameter-related projection-based iterative algorithm for a kind of generalized positive semidefinite least squares problem

College of Mathematics and Informatics, Fujian Normal University, Fuzhou, 350007, P. R. China

Received  March 2020 Revised  September 2020 Published  September 2020

Fund Project: This work was supported by the National Natural Science Foundations of China (11301080, 11526053), Science Foundation of Fujian Province of China (2016J05003), the Foundation of the Education Department of Fujian Province of China (JA15106), and the Project of Nonlinear analysis and its applications (IRTL1206)

A projection-based iterative algorithm, which is related to a single parameter (or the multiple parameters), is proposed to solve the generalized positive semidefinite least squares problem introduced in this paper. The single parameter (or the multiple parameters) projection-based iterative algorithms converges to the optimal solution under certain condition, and the corresponding numerical results are shown too.

Citation: Chengjin Li. Parameter-related projection-based iterative algorithm for a kind of generalized positive semidefinite least squares problem. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 511-520. doi: 10.3934/naco.2020048
References:
[1]

B. AkessonJ. JorgensenN. Poulsen and S. Jorgensen, A generalized autocovariance least-squares method for Kalman filter tuning, Journal of Proccess Control, 18 (2008), 769-779.   Google Scholar

[2]

J. C. Allwright, Positive semidefinite matrices: Characterization via conical hulls and least-squares solution of a matrix equation, SIAM Journal on Control and Optimization, 26 (1988), 537-556.  doi: 10.1137/0326032.  Google Scholar

[3]

Z. X. Chan and D. F. Sun, Constraint nondegeneracy, strong regularity, and nonsingularity in semidefinite programming, SIAM Journal on Optimization, 19 (2008), 370-396.  doi: 10.1137/070681235.  Google Scholar

[4]

H. Dai and P. Lancaster, Linear matrix equations from an inverse problem of vibration theory, Linear Algebra and Its Applications, 246 (1996), 31-47.  doi: 10.1016/0024-3795(94)00311-4.  Google Scholar

[5]

N. Gillis and P. Sharma, A semi-analytical approach for the positive semidefinite procrustes problem, Linear Algebra and Its Applications, 540 (2018), 112-137.  doi: 10.1016/j.laa.2017.11.023.  Google Scholar

[6]

N. KrislockJ. LangJ. VarahD. K. Pai and H. P. Seidel, Local compliance estimation via positive semidefinite constrained least squares, IEEE transactions on Robotics, 20 (2004), 1007-1011.   Google Scholar

[7]

C. J. LiS. G. Zhang and H. H. Wu, The proximal point iterative algorithm for the generalized semidefinite least squares problem, ACTA Mathematicae Applicatae Sinica, (in Chinese), 42 (2019), 371-384.   Google Scholar

[8]

X. LiD. F. Sun and K. C. Toh, A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions, Mathematical Programming, 155 (2016), 333-373.  doi: 10.1007/s10107-014-0850-5.  Google Scholar

[9]

A. Liao and Z. Bai, Least-squares solution of AXB = D over symmetric positive semidefinite matrices X, Journal of Computational Mathematics, 21 (2003), 175-182.   Google Scholar

[10]

Y. Nesterov, Introductory Lectures On Convex Optimization: A Basic Course, Springer Science and Business Media, 2004. doi: 10.1007/978-1-4419-8853-9.  Google Scholar

[11]

H. D. Qi, Conditional quadratic semidefinite programming: examples and methods, Journal of Operations Research Society of China, 2 (2014), 143-170.  doi: 10.1007/s40305-014-0048-9.  Google Scholar

[12]

H. D. Qi, A convex matrix optimization for the additive constant problem in multidimensional scaling with application to locally linear embedding, SIAM Journal on Optimization, 26 (2016), 2564-2590.  doi: 10.1137/15M1043133.  Google Scholar

[13]

H. D. Qi and D. Sun, A quadratically convergent Newton method for computing the nearest correlation matrix, SIAM Journal on Matrix Analysis and Applications, 28 (2006), 360-385.  doi: 10.1137/050624509.  Google Scholar

[14]

A. RinnanM. AnderssonC. Ridder and B. Engelsen, Recursive weighted partial least squares(rPLS): An efficient varible selection method using PLS, Journal of Chemometrics, 28 (2014), 439-447.   Google Scholar

[15]

M. L. Stein, Spatial variation of total column ozone on a global scale, The Annals of Applied Statistics, 1 (2007), 191-210.  doi: 10.1214/07-AOAS106.  Google Scholar

[16]

K. C. TohM. J. Todd and R. H. Tutuncu, SDPT3 - a Matlab software package for semidefinite programming, Optimization Methods and Software, 11 (1999), 545-581.  doi: 10.1080/10556789908805762.  Google Scholar

[17]

K. G. Woodgate, Efficient stiffness matrix estimation for elastic structures, Computers and Structures, 69 (1998), 79-84.   Google Scholar

show all references

References:
[1]

B. AkessonJ. JorgensenN. Poulsen and S. Jorgensen, A generalized autocovariance least-squares method for Kalman filter tuning, Journal of Proccess Control, 18 (2008), 769-779.   Google Scholar

[2]

J. C. Allwright, Positive semidefinite matrices: Characterization via conical hulls and least-squares solution of a matrix equation, SIAM Journal on Control and Optimization, 26 (1988), 537-556.  doi: 10.1137/0326032.  Google Scholar

[3]

Z. X. Chan and D. F. Sun, Constraint nondegeneracy, strong regularity, and nonsingularity in semidefinite programming, SIAM Journal on Optimization, 19 (2008), 370-396.  doi: 10.1137/070681235.  Google Scholar

[4]

H. Dai and P. Lancaster, Linear matrix equations from an inverse problem of vibration theory, Linear Algebra and Its Applications, 246 (1996), 31-47.  doi: 10.1016/0024-3795(94)00311-4.  Google Scholar

[5]

N. Gillis and P. Sharma, A semi-analytical approach for the positive semidefinite procrustes problem, Linear Algebra and Its Applications, 540 (2018), 112-137.  doi: 10.1016/j.laa.2017.11.023.  Google Scholar

[6]

N. KrislockJ. LangJ. VarahD. K. Pai and H. P. Seidel, Local compliance estimation via positive semidefinite constrained least squares, IEEE transactions on Robotics, 20 (2004), 1007-1011.   Google Scholar

[7]

C. J. LiS. G. Zhang and H. H. Wu, The proximal point iterative algorithm for the generalized semidefinite least squares problem, ACTA Mathematicae Applicatae Sinica, (in Chinese), 42 (2019), 371-384.   Google Scholar

[8]

X. LiD. F. Sun and K. C. Toh, A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions, Mathematical Programming, 155 (2016), 333-373.  doi: 10.1007/s10107-014-0850-5.  Google Scholar

[9]

A. Liao and Z. Bai, Least-squares solution of AXB = D over symmetric positive semidefinite matrices X, Journal of Computational Mathematics, 21 (2003), 175-182.   Google Scholar

[10]

Y. Nesterov, Introductory Lectures On Convex Optimization: A Basic Course, Springer Science and Business Media, 2004. doi: 10.1007/978-1-4419-8853-9.  Google Scholar

[11]

H. D. Qi, Conditional quadratic semidefinite programming: examples and methods, Journal of Operations Research Society of China, 2 (2014), 143-170.  doi: 10.1007/s40305-014-0048-9.  Google Scholar

[12]

H. D. Qi, A convex matrix optimization for the additive constant problem in multidimensional scaling with application to locally linear embedding, SIAM Journal on Optimization, 26 (2016), 2564-2590.  doi: 10.1137/15M1043133.  Google Scholar

[13]

H. D. Qi and D. Sun, A quadratically convergent Newton method for computing the nearest correlation matrix, SIAM Journal on Matrix Analysis and Applications, 28 (2006), 360-385.  doi: 10.1137/050624509.  Google Scholar

[14]

A. RinnanM. AnderssonC. Ridder and B. Engelsen, Recursive weighted partial least squares(rPLS): An efficient varible selection method using PLS, Journal of Chemometrics, 28 (2014), 439-447.   Google Scholar

[15]

M. L. Stein, Spatial variation of total column ozone on a global scale, The Annals of Applied Statistics, 1 (2007), 191-210.  doi: 10.1214/07-AOAS106.  Google Scholar

[16]

K. C. TohM. J. Todd and R. H. Tutuncu, SDPT3 - a Matlab software package for semidefinite programming, Optimization Methods and Software, 11 (1999), 545-581.  doi: 10.1080/10556789908805762.  Google Scholar

[17]

K. G. Woodgate, Efficient stiffness matrix estimation for elastic structures, Computers and Structures, 69 (1998), 79-84.   Google Scholar

Table .  Comparing of Algorithm 2.4 and Algorithm 3.2
Parameters Spending time Parameters Spending time
$ (m,n,p,(r)) $ $ type $ $ tim1 $ $ tim2 $ $ (m,n,p,(r)) $ $ type $ $ tim1 $ $ tim2 $
(71, 65, 67) T1 62.1 15.6 (59, 8, 30) T1 0.017 0.016
(53, 39, 48) 2.13 1.95 (103, 61, 85) 1.82 1.09
(101, 33, 61) 0.25 0.19 (102, 78, 90) 8.95 5.61
(102, 19, 95) 0.040 0.039 (93, 20, 92) 0.041 0.038
(66, 48, 53) 10.1 3.28 (58, 18, 45) 0.05 0.05
(62, 4, 38) T2 0.009 0.008 (49, 41, 42) T2 115.6 8.67
(71, 11, 24) 0.04 0.02 (94, 44, 92) 0.94 0.28
(92, 43, 64) 1.99 0.45 (98, 19, 93) 0.05 0.03
(93, 7, 48) 0.014 0.012 (73, 4, 30) 0.008 0.007
(86, 64, 72) 32.9 3.99 (78, 39, 62) 1.54 0.34
(94, 16, 85, (6)) T3 0.03 0.02 (91, 43, 83, (21)) T3 0.90 0.20
(60, 36, 53, (25)) 1.18 0.28 (54, 11, 24, (9)) 0.04 0.02
(31, 8, 10, (7)) 0.12 0.03 (86, 9, 83, (1)) 0.019 0.015
(78, 55, 69, (7)) 20.7 0.77 (97, 17, 33, (15)) 0.08 0.04
(98, 43, 51, (3)) 10.3 0.44 (42, 10, 36, (9)) 0.023 0.019
Parameters Spending time Parameters Spending time
$ (m,n,p,(r)) $ $ type $ $ tim1 $ $ tim2 $ $ (m,n,p,(r)) $ $ type $ $ tim1 $ $ tim2 $
(71, 65, 67) T1 62.1 15.6 (59, 8, 30) T1 0.017 0.016
(53, 39, 48) 2.13 1.95 (103, 61, 85) 1.82 1.09
(101, 33, 61) 0.25 0.19 (102, 78, 90) 8.95 5.61
(102, 19, 95) 0.040 0.039 (93, 20, 92) 0.041 0.038
(66, 48, 53) 10.1 3.28 (58, 18, 45) 0.05 0.05
(62, 4, 38) T2 0.009 0.008 (49, 41, 42) T2 115.6 8.67
(71, 11, 24) 0.04 0.02 (94, 44, 92) 0.94 0.28
(92, 43, 64) 1.99 0.45 (98, 19, 93) 0.05 0.03
(93, 7, 48) 0.014 0.012 (73, 4, 30) 0.008 0.007
(86, 64, 72) 32.9 3.99 (78, 39, 62) 1.54 0.34
(94, 16, 85, (6)) T3 0.03 0.02 (91, 43, 83, (21)) T3 0.90 0.20
(60, 36, 53, (25)) 1.18 0.28 (54, 11, 24, (9)) 0.04 0.02
(31, 8, 10, (7)) 0.12 0.03 (86, 9, 83, (1)) 0.019 0.015
(78, 55, 69, (7)) 20.7 0.77 (97, 17, 33, (15)) 0.08 0.04
(98, 43, 51, (3)) 10.3 0.44 (42, 10, 36, (9)) 0.023 0.019
[1]

Xiao-Wen Chang, David Titley-Peloquin. An improved algorithm for generalized least squares estimation. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 451-461. doi: 10.3934/naco.2020044

[2]

Zhuoyi Xu, Yong Xia, Deren Han. On box-constrained total least squares problem. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 439-449. doi: 10.3934/naco.2020043

[3]

Anwa Zhou, Jinyan Fan. A semidefinite relaxation algorithm for checking completely positive separable matrices. Journal of Industrial & Management Optimization, 2019, 15 (2) : 893-908. doi: 10.3934/jimo.2018076

[4]

Zhou Sheng, Gonglin Yuan, Zengru Cui, Xiabin Duan, Xiaoliang Wang. An adaptive trust region algorithm for large-residual nonsmooth least squares problems. Journal of Industrial & Management Optimization, 2018, 14 (2) : 707-718. doi: 10.3934/jimo.2017070

[5]

Yunhai Xiao, Soon-Yi Wu, Bing-Sheng He. A proximal alternating direction method for $\ell_{2,1}$-norm least squares problem in multi-task feature learning. Journal of Industrial & Management Optimization, 2012, 8 (4) : 1057-1069. doi: 10.3934/jimo.2012.8.1057

[6]

Chenchen Wu, Dachuan Xu, Xin-Yuan Zhao. An improved approximation algorithm for the $2$-catalog segmentation problem using semidefinite programming relaxation. Journal of Industrial & Management Optimization, 2012, 8 (1) : 117-126. doi: 10.3934/jimo.2012.8.117

[7]

Xueling Zhou, Meixia Li, Haitao Che. Relaxed successive projection algorithm with strong convergence for the multiple-sets split equality problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020082

[8]

Hassan Mohammad, Mohammed Yusuf Waziri, Sandra Augusta Santos. A brief survey of methods for solving nonlinear least-squares problems. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 1-13. doi: 10.3934/naco.2019001

[9]

Ya-Xiang Yuan. Recent advances in numerical methods for nonlinear equations and nonlinear least squares. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 15-34. doi: 10.3934/naco.2011.1.15

[10]

Mila Nikolova. Analytical bounds on the minimizers of (nonconvex) regularized least-squares. Inverse Problems & Imaging, 2008, 2 (1) : 133-149. doi: 10.3934/ipi.2008.2.133

[11]

Yanxing Cui, Chuanlong Wang, Ruiping Wen. On the convergence of generalized parallel multisplitting iterative methods for semidefinite linear systems. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 863-873. doi: 10.3934/naco.2012.2.863

[12]

Ya-Zheng Dang, Zhong-Hui Xue, Yan Gao, Jun-Xiang Li. Fast self-adaptive regularization iterative algorithm for solving split feasibility problem. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1555-1569. doi: 10.3934/jimo.2019017

[13]

Qingzhi Yang. The revisit of a projection algorithm with variable steps for variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 211-217. doi: 10.3934/jimo.2005.1.211

[14]

Simai He, Min Li, Shuzhong Zhang, Zhi-Quan Luo. A nonconvergent example for the iterative water-filling algorithm. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 147-150. doi: 10.3934/naco.2011.1.147

[15]

Fabián Crocce, Ernesto Mordecki. A non-iterative algorithm for generalized pig games. Journal of Dynamics & Games, 2018, 5 (4) : 331-341. doi: 10.3934/jdg.2018020

[16]

Lingling Lv, Zhe Zhang, Lei Zhang, Weishu Wang. An iterative algorithm for periodic sylvester matrix equations. Journal of Industrial & Management Optimization, 2018, 14 (1) : 413-425. doi: 10.3934/jimo.2017053

[17]

Behrouz Kheirfam, Morteza Moslemi. On the extension of an arc-search interior-point algorithm for semidefinite optimization. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 261-275. doi: 10.3934/naco.2018015

[18]

Yanfei Lu, Qingfei Yin, Hongyi Li, Hongli Sun, Yunlei Yang, Muzhou Hou. Solving higher order nonlinear ordinary differential equations with least squares support vector machines. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1481-1502. doi: 10.3934/jimo.2019012

[19]

JaEun Ku. Maximum norm error estimates for Div least-squares method for Darcy flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1305-1318. doi: 10.3934/dcds.2010.26.1305

[20]

Lucian Coroianu, Danilo Costarelli, Sorin G. Gal, Gianluca Vinti. Approximation by multivariate max-product Kantorovich-type operators and learning rates of least-squares regularized regression. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4213-4225. doi: 10.3934/cpaa.2020189

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]