[1]
|
F. Bai and L. Xu, A partially parallel prediction-correction splitting method for convex optimization problems with separable structure, J. Oper. Res. Soc. China, 5 (2017), 529-544.
doi: 10.1007/s40305-017-0163-5.
|
[2]
|
C. Chen, B. He, X. Yuan and Y. Ye, The direct extension of ADMM for multi-block convex minimization problem is not necessarily convergent, Math. Program., 155 (2016), 57-79.
doi: 10.1007/s10107-014-0826-5.
|
[3]
|
X. Cai, D. Han and X. Yuan, On the convergence of the direct extension of ADMM for three- block separable convex minimization models with one strongly convex function, Comput. Optim. Appl., 66 (2017), 39-73.
doi: 10.1007/s10589-016-9860-y.
|
[4]
|
W. Deng and W. Yin, On the global and linear convergence of the generalized alternating direction method of multipliers,, J Sci. Comput., 66 (2016), 889-916.
doi: 10.1007/s10915-015-0048-x.
|
[5]
|
W. Deng, M. Lai, Z. Peng and W. Yin, Parallel multi-block admm with $o(1/ k)$ convergence, J. Sci. Comput., 71 (2017), 712-736.
doi: 10.1007/s10915-016-0318-2.
|
[6]
|
J. Eckstein and D. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program., 55 (1992), 293-318.
doi: 10.1007/BF01581204.
|
[7]
|
B. He, Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities, Comput. Optim. Appl., 42 (2009), 195-212.
doi: 10.1007/s10589-007-9109-x.
|
[8]
|
B. He, M. Tao and X. Yuan, Alternating direction method with Gaussian back substitution for separable convex programming, SIAM J. Optim., 22 (2012), 313-340.
doi: 10.1137/110822347.
|
[9]
|
B. He, M. Tao and X. Yuan, A splitting method for separable convex programming, IMA J. Numer. Anal., 35 (2015), 394-426.
doi: 10.1093/imanum/drt060.
|
[10]
|
B. He, L. Hou and X. Yuan, On full Jacobian decomposition of the augmented Lagrangian method for separable convex programming, SIAM J. Optim., 25 (2015), 2274-2312.
doi: 10.1137/130922793.
|
[11]
|
D. Han, X. Yuan and W. Zhang, An augmented-Lagrangian-based parallel splitting method for separable convex minimization with applications to image processing, Math. Comput., 83 (2014), 2263-2291.
doi: 10.1090/S0025-5718-2014-02829-9.
|
[12]
|
D. Han, X. Yuan, W. Zhang and X. Cai, An ADM-based splitting method for separable convex programming, Comput. Optim. Appl., 54 (2013), 343-369.
doi: 10.1007/s10589-012-9510-y.
|
[13]
|
X. Gao and S. Zhang, First-order algorithms for convex optimization with nonseparable objective and coupled constraints, J. Oper. Res. Soc. China, 5 (2016), 1-29.
doi: 10.1007/s40305-016-0131-5.
|
[14]
|
D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finiteelement approximations, Comput. Math. Appl., 2 (1976), 17-40.
|
[15]
|
R. Glowinski and A. Marrocco, Sur l'approximation par éléments nis d'ordre un, et la résolution par pénalisation-dualité d'une classe de problémes de Dirichlet nonlinéaires, J. Equine. Vet. Sci., 2 (1975), 41-76.
doi: 10.1051/m2an/197509R200411.
|
[16]
|
Z. Wu, X. Cai and D. Han, Linearized block-wise alternating direction method of multipliers for multiple-block convex programming, Journal of Industrial and Management Optimization, 14 (2018), 833-855.
doi: 10.3934/jimo.2017078.
|