December  2020, 10(4): 571-578. doi: 10.3934/naco.2020052

The research on the properties of Fourier matrix and bent function

1. 

School of Mathematics and Statistics, Changshu Institute of Technology, Suzhou, 215500, China

2. 

Shanghai Seed Power Enterprise Management Cosulting Co., LTD, Minhang District, Shanghai, 201200, China

3. 

Asset Management Department, Jiangsu Zijin Rural Commercial Bank Co., LTD, Nanjing, 210023, China

* Corresponding author: Li Zhang

Received  April 2020 Revised  September 2020 Published  September 2020

Fund Project: The first author is supported by NSF grant 10231060

This paper first gives out basic background and some definitions and propositions for Fourier matrix and bent function. Secondly we construct an standard orthogonal basis by the eigenvectors of the corresponding Fourier matrix. At last the diagonalization work of Fourier matrix is completed and some theorems about them are proved.

Citation: Li Zhang, Xiaofeng Zhou, Min Chen. The research on the properties of Fourier matrix and bent function. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 571-578. doi: 10.3934/naco.2020052
References:
[1]

C. Carlet, Boolen Function For Cryptography And Error Correcting Codes, Cambridge University, 2007. Google Scholar

[2]

C. Hughes, Partially-bent functions, Proceedings of The 12th Annual International Cryptography Conference on Advances Incryptology, 74 (1992), 280-291.   Google Scholar

[3]

J. DingH. ZhenQ. Wen and Y. Yang, Construction and enumeration of multiple-output orthogonal Boolean functions, Journal of Beijing University of Posts and Telecommunications, 4 (2005), 9-11.   Google Scholar

[4]

V. KumearA. Scholtz and R. Welch, Generalized bent functions and their properties, Journal of Combinatorial Theory, 4 (1985), 90-107.  doi: 10.1016/0097-3165(85)90049-4.  Google Scholar

[5]

R.Lial and H. Niederreiter, Finite Fields, Addison-Wesley Publishing Company, New York, 1984.  Google Scholar

[6]

O. Rothaus, On bent fuctions, Journal of Combination Theory, 20 (1976), 300-305.  doi: 10.1016/0097-3165(76)90024-8.  Google Scholar

[7]

X. Hou and P. Langevin, Results on bent fuctions, Journal of Combination Theory, 80 (1997), 232-246.  doi: 10.1006/jcta.1997.2804.  Google Scholar

[8]

P. Langevin, On generalized bent fuctions,, CISM Course and Lectures, 339 (1992), 147-159.   Google Scholar

[9]

P. Langevin and X. Hou, Computing partial spread functions in eight variables, IEEE Trans. Inf. Theory, 57 (2011), 2263-2269.  doi: 10.1109/TIT.2011.2112230.  Google Scholar

[10]

P. Langevin, P. Rabizzoni, P. Veron and J. Zanotti, On the number of bent functions with 8 variables, Proceedings of the Conference BFCA 2006, Publications des universites de Rousen et du Havre(2006), 125–136. Google Scholar

[11]

Y. YuanD. JinY. Zhao and S. Zhang, Relationship between generalized partially bent functions and generalized bent functions over finite fields, Journal of Information Engineering University, 9 (2009), 313-317.   Google Scholar

[12]

Y. Zhao and S. Li, Generalized partially-bent functions and characteristics of the auto-correlation functions and spectrum, Journal of Engineering Mathematics, 4 (1999), 91-96.   Google Scholar

[13]

W. Sun and Y. Yuan, Optimization Theory and Methods: Nonlinear Programming, Springer, New York, 2006.  Google Scholar

[14] Y. Yuan and W. Sun, Optimization Theory and Methods, Science Press, Beijing, 1997.   Google Scholar

show all references

References:
[1]

C. Carlet, Boolen Function For Cryptography And Error Correcting Codes, Cambridge University, 2007. Google Scholar

[2]

C. Hughes, Partially-bent functions, Proceedings of The 12th Annual International Cryptography Conference on Advances Incryptology, 74 (1992), 280-291.   Google Scholar

[3]

J. DingH. ZhenQ. Wen and Y. Yang, Construction and enumeration of multiple-output orthogonal Boolean functions, Journal of Beijing University of Posts and Telecommunications, 4 (2005), 9-11.   Google Scholar

[4]

V. KumearA. Scholtz and R. Welch, Generalized bent functions and their properties, Journal of Combinatorial Theory, 4 (1985), 90-107.  doi: 10.1016/0097-3165(85)90049-4.  Google Scholar

[5]

R.Lial and H. Niederreiter, Finite Fields, Addison-Wesley Publishing Company, New York, 1984.  Google Scholar

[6]

O. Rothaus, On bent fuctions, Journal of Combination Theory, 20 (1976), 300-305.  doi: 10.1016/0097-3165(76)90024-8.  Google Scholar

[7]

X. Hou and P. Langevin, Results on bent fuctions, Journal of Combination Theory, 80 (1997), 232-246.  doi: 10.1006/jcta.1997.2804.  Google Scholar

[8]

P. Langevin, On generalized bent fuctions,, CISM Course and Lectures, 339 (1992), 147-159.   Google Scholar

[9]

P. Langevin and X. Hou, Computing partial spread functions in eight variables, IEEE Trans. Inf. Theory, 57 (2011), 2263-2269.  doi: 10.1109/TIT.2011.2112230.  Google Scholar

[10]

P. Langevin, P. Rabizzoni, P. Veron and J. Zanotti, On the number of bent functions with 8 variables, Proceedings of the Conference BFCA 2006, Publications des universites de Rousen et du Havre(2006), 125–136. Google Scholar

[11]

Y. YuanD. JinY. Zhao and S. Zhang, Relationship between generalized partially bent functions and generalized bent functions over finite fields, Journal of Information Engineering University, 9 (2009), 313-317.   Google Scholar

[12]

Y. Zhao and S. Li, Generalized partially-bent functions and characteristics of the auto-correlation functions and spectrum, Journal of Engineering Mathematics, 4 (1999), 91-96.   Google Scholar

[13]

W. Sun and Y. Yuan, Optimization Theory and Methods: Nonlinear Programming, Springer, New York, 2006.  Google Scholar

[14] Y. Yuan and W. Sun, Optimization Theory and Methods, Science Press, Beijing, 1997.   Google Scholar
[1]

Armin Eftekhari, Michael B. Wakin, Ping Li, Paul G. Constantine. Randomized learning of the second-moment matrix of a smooth function. Foundations of Data Science, 2019, 1 (3) : 329-387. doi: 10.3934/fods.2019015

[2]

Yongge Tian. A survey on rank and inertia optimization problems of the matrix-valued function $A + BXB^{*}$. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 289-326. doi: 10.3934/naco.2015.5.289

[3]

Josef Diblík, Zdeněk Svoboda. Asymptotic properties of delayed matrix exponential functions via Lambert function. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 123-144. doi: 10.3934/dcdsb.2018008

[4]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[5]

Sun Yi, Patrick W. Nelson, A. Galip Ulsoy. Delay differential equations via the matrix lambert w function and bifurcation analysis: application to machine tool chatter. Mathematical Biosciences & Engineering, 2007, 4 (2) : 355-368. doi: 10.3934/mbe.2007.4.355

[6]

Sergey P. Degtyarev. On Fourier multipliers in function spaces with partial Hölder condition and their application to the linearized Cahn-Hilliard equation with dynamic boundary conditions. Evolution Equations & Control Theory, 2015, 4 (4) : 391-429. doi: 10.3934/eect.2015.4.391

[7]

Yuri Latushkin, Alim Sukhtayev. The Evans function and the Weyl-Titchmarsh function. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 939-970. doi: 10.3934/dcdss.2012.5.939

[8]

J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413

[9]

H. N. Mhaskar, T. Poggio. Function approximation by deep networks. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4085-4095. doi: 10.3934/cpaa.2020181

[10]

Hassan Emamirad, Philippe Rogeon. Semiclassical limit of Husimi function. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 669-676. doi: 10.3934/dcdss.2013.6.669

[11]

Ken Ono. Parity of the partition function. Electronic Research Announcements, 1995, 1: 35-42.

[12]

Tomasz Downarowicz, Yonatan Gutman, Dawid Huczek. Rank as a function of measure. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2741-2750. doi: 10.3934/dcds.2014.34.2741

[13]

Giovanni Colombo, Khai T. Nguyen. On the minimum time function around the origin. Mathematical Control & Related Fields, 2013, 3 (1) : 51-82. doi: 10.3934/mcrf.2013.3.51

[14]

Welington Cordeiro, Manfred Denker, Michiko Yuri. A note on specification for iterated function systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3475-3485. doi: 10.3934/dcdsb.2015.20.3475

[15]

Luc Robbiano. Counting function for interior transmission eigenvalues. Mathematical Control & Related Fields, 2016, 6 (1) : 167-183. doi: 10.3934/mcrf.2016.6.167

[16]

Todd Kapitula, Björn Sandstede. Eigenvalues and resonances using the Evans function. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 857-869. doi: 10.3934/dcds.2004.10.857

[17]

Martin D. Buhmann, Slawomir Dinew. Limits of radial basis function interpolants. Communications on Pure & Applied Analysis, 2007, 6 (3) : 569-585. doi: 10.3934/cpaa.2007.6.569

[18]

Christian Wolf. A shift map with a discontinuous entropy function. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012

[19]

Yulin Zhao. On the monotonicity of the period function of a quadratic system. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 795-810. doi: 10.3934/dcds.2005.13.795

[20]

Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1091-1108. doi: 10.3934/jimo.2014.10.1091

 Impact Factor: 

Metrics

  • PDF downloads (18)
  • HTML views (37)
  • Cited by (0)

Other articles
by authors

[Back to Top]