[1]
|
M. Achache, Complexity analysis of a weighted-full-Newton step interior-point algorithm for $P_{\ast }\left(\kappa \right)$-LCP, RAIRO-Oper. Res., 50 (2016), 131-143.
doi: 10.1051/ro/2015020.
|
[2]
|
M. Achache and N. Tabchouche, Complexity analysis and numerical implementation of large-update interior-point methods for SDLCP based on a new parametric barrier kernel function, Optimization, 67 (2018), 1211-1230.
doi: 10.1080/02331934.2018.1462356.
|
[3]
|
S. Asadi and H. Mansouri, Polynomial interior-point algorithm for $P_{\ast }\left(\kappa \right)$-horizontal linear complementarity problems, Numer. Algorithms, 63 (2013), 385-398.
doi: 10.1007/s11075-012-9628-0.
|
[4]
|
S. Asadi, H. Mansouri and M. Zangiabadi, A class of path-following interior-point methods for $P_{\ast }\left(\kappa \right)$-horizontal linear complementarity problems, J. Oper Res Soc China, 3 (2015), 17-30.
doi: 10.1007/s40305-015-0070-6.
|
[5]
|
S. Asadi, M. Zangiabadi and H. Mansouri, An infeasible interior-point algorithm with full-Newton steps for $P_{\ast }\left(\kappa \right)$-horizontal linear complementarity problems based on a kernel function, J. Appl. Math. Comput., 50 (2016), 15-37.
doi: 10.1007/s12190-014-0856-4.
|
[6]
|
Y. Q. Bai, M. El Ghami and C. Roos, A new efficient large-update primal-dual interior-point method based on a finite barrier, SIAM J. Optim., 13 (2003), 766-782.
doi: 10.1137/S1052623401398132.
|
[7]
|
Y. Q. Bai, M. El Ghami and C. Roos, A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization, SIAM J. Optim., 15 (2004), 101-128.
doi: 10.1137/S1052623403423114.
|
[8]
|
Y. Q. Bai and C. Roos, A primal-dual interior-point method based on a new kernel function with linear growth rate, Proceedings of the 9th Australian Optimization Day, 2002.
|
[9]
|
M. Bouafia, D. Benterki and A. Yassine, An efficient primal–dual interior point method for linear programming problems based on a new kernel function with a trigonometric barrier term, J. Optim. Theory Appl., 170 (2016), 528-545.
doi: 10.1007/s10957-016-0895-0.
|
[10]
|
Ch. Chennouf, Extension d'une Méthode de Point Intérieur au Problème Complémentaire Linéaire avec $P_{\ast }\left(\kappa \right)-$matrice, Mémoire de Master $2, $ Université Ferhat Abbas Sétif1, Algérie, 2018.
|
[11]
|
G. M. Cho and M. K. Kim, A new large-update interior point algorithm for $P_{\ast}\left(\kappa \right)$ LCPs based on kernel functions, Appl. Math. Comput., 182 (2006), 1169-1183.
doi: 10.1016/j.amc.2006.04.060.
|
[12]
|
G. M. Cho, A new large–update interior point algorithm for $P_{\ast}\left(\kappa \right)$ linear complementarity problems, J. Comput. Appl. Math., 216 (2008), 256-278.
doi: 10.1016/j.cam.2007.05.007.
|
[13]
|
G. M. Cho, Large–update interior point algorithm for $P_{\ast }$-linear complementarity problem, J. Inequalities Appl., 363 (2014), 1-12.
doi: 10.1186/1029-242X-2014-363.
|
[14]
|
R. W. Cottle, J. S. Pang and R. E. Stone, The Linear Complementarity Problem, Academic Press, San Diego, 1992.
|
[15]
|
M. El Ghami and T. Steihaug, Kernel–function based primal-dual algorithms for $P_{\ast }\left(\kappa \right) $ linear comlementarity problem, RAIRO-Oper. Res., 44 (2010), 185-205.
doi: 10.1051/ro/2010014.
|
[16]
|
M. El Ghami and G. Q. Wang, Interior–point methods for $P_{\ast}\left(\kappa \right) $ linear comlementarity problem based on generalized trigonometric barrier function, International Journal of Applied Mathematics, (2017), 11–33.
doi: 10.12732/ijam.v30i1.2.
|
[17]
|
S. Fathi-Hafshejani and A. Fakharzadeh Jahromi, An interior point method for $P_{\ast}\left(\kappa \right) $-horizontal linear complementarity problem based on a new proximity function, J. Appl. Math. Comput., 62 (2020), 281-300.
doi: 10.1007/s12190-019-01284-9.
|
[18]
|
S. Fathi-Hafshejani, H. Mansouri and M. Peyghamic, An interior-point algorithm for $P_{\ast }\left(\kappa \right) $-linear complementarity problem based on a new trigonometric kernel functions, Journal of Mathematical Modeling, 5 (2017), 171-197.
|
[19]
|
P. Ji, M. Zhang and X. Li, A Primal-dual large-update interior-point algorithm for $P_{\ast}(\kappa)$-LCP based on a new class of kernel functions, Acta Mathematicae Applicatae Sinica, English Series, 34 (2018), 119-134.
doi: 10.1007/s10255-018-0729-y.
|
[20]
|
M. Kojima, N. Megiddo, T. Noma and A. Yoshise, A unified approach to interior point algorithms for linear complementarity problems: A summary, Operations Research Letters, 10 (1991), 247-254.
doi: 10.1016/0167-6377(91)90010-M.
|
[21]
|
Y. Lee, Y. Cho and G. Cho, Kernel function based interior-point methods for horizontal linear complementarity problems, Journal of Inequalities and Applications, (2013), Article number: 215.
doi: 10.1186/1029-242X-2013-215.
|
[22]
|
G. Lesaja and C. Roos, Unified analysis of kernel–based interior–point methods for $P_{\ast } (\kappa) $-LCP, SIAM Journal on Optimization, 20 (2010), 3014-3039.
doi: 10.1137/090766735.
|
[23]
|
J. Peng, C. Roos and T. Terlaky, Self-regular functions and new search directions for linear and semidefinite optimization, Math. Program., Ser., 93 (2002), 129-171.
doi: 10.1007/s101070200296.
|
[24]
|
Z. G. Qian and Y. Q. Bai, Primal-dual interior point algorithm with dynamic step-size based on kernel function for linear programming, Journal of Shanghai University (English Edition), 9 (2005), 391-396.
doi: 10.1007/s11741-005-0021-2.
|
[25]
|
M. Reza Peyghami, S. Fathi Hafshejani and L. Shirvani, Complexity of interior-point methods for linear optimization based on a new trigonometric kernel function, Journal of Computational and Applied Mathematics, 2 (2014), 74-85.
doi: 10.1016/j.cam.2013.04.039.
|
[26]
|
C. Roos, T. Terlaky and J. Ph. Vial, Theory and Algorithms for Linear optimization. An Interior Point Approach, John Wiley and Sons, Chichester, 1997.
|
[27]
|
G. Q. Wang and Y. Q. Bai, Polynomial interior-point algorithm for $P_{\ast}\left(\kappa \right)$ horizontal linear complementarity problem, J. Comput. Appl. Math., 233 (2009), 248-263.
doi: 10.1016/j.cam.2009.07.014.
|
[28]
|
S. J. Wright, Primal-Dual Interior Point Methods, SIAM, 1997.
doi: 10.1137/1.9781611971453.
|