
-
Previous Article
The proximal methods for solving absolute value equation
- NACO Home
- This Issue
-
Next Article
Optimal control of a dynamical system with intermediate phase constraints and applications in cash management
A novel hybrid AGWO-PSO algorithm in mitigation of power network oscillations with STATCOM
Department of Electrical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004 |
The assimilation of flexible AC transmission (FACTS) controllers to the existing power network outweigh the numerous alternatives in enhancing the damping behavior for the inter-area /intra-area system oscillations of a power network. This paper provides a rigorous analysis in damping of oscillations in a power network. It utilizes a shunt connected voltage source converter (VSC) based FACTS device to enhance the system operating characteristics. A comprehensive system mathematical modelling has been developed for demonstrating the system behavior under different loading conditions. A novel hybrid augmented grey wolf optimization-particle swarm optimization (AGWO-PSO) is proposed for the coordinated design of controllers static synchronous compensator (STATCOM) and power system stabilizers (PSSs). A multi-objective function, comprising damping ratio improvement and drifting the real part to the left-hand side of S-plane of the system poles, has been developed to achieve the objective and the effectiveness of the proposed algorithms have been analyzed by monitoring the system performance under different loading conditions. Eigenvalue analysis and damping nature of the system states under perturbation have been presented for the proposed algorithms under different loading conditions, and the performance evaluation of the proposed algorithms have been done by means of time of execution and the convergence characteristics.
References:
[1] |
http://socr.ucla.edu/Applets.dir/F_Table.html. Google Scholar |
[2] |
V. S. Aragón, S. C. Esquivel and C. C. Coello,
An immune algorithm with power redistribution for solving economic dispatch problems, Information Sciences, 295 (2015), 609-632.
doi: 10.1016/j.ins.2014.10.026. |
[3] |
M. Basu, Squirrel search algorithm for multi-region combined heat and power economic dispatch incorporating renewable energy sources, Energy, 182 (2019), 296-305. Google Scholar |
[4] |
A. Cuevas, M. Febrero and R. Fraiman,
An anova test for functional data, Computational Statistics & Data Analysis, 47 (2004), 111-122.
doi: 10.1016/j.csda.2003.10.021. |
[5] |
J. Derrac, S. García, D. Molina and F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm and Evolutionary Computation, 1 (2011), 3-18. Google Scholar |
[6] |
R. Devarapalli and B. Bhattacharyya, Application of modified harris hawks optimization in power system oscillations damping controller design, in 2019 8th International Conference on Power Systems (ICPS), IEEE, (2019), 1–6. Google Scholar |
[7] |
R. Devarapalli and B. Bhattacharyya, A framework for $h_{2} /h_\infty$ synthesis in damping power network oscillations with statcom, Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 1–22. Google Scholar |
[8] |
R. Devarapalli and B. Bhattacharyya, Optimal parameter tuning of power oscillation damper by mhho algorithm, in 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP), IEEE, 2019, 1–7.
doi: 10.1007/978-981-13-1816-0. |
[9] |
R. Devarapalli and B. Bhattacharyya, A hybrid modified grey wolf optimization-sine cosine algorithm-based power system stabilizer parameter tuning in a multimachine power system, Optimal Control Applications and Methods. Google Scholar |
[10] |
R. Devarapalli and B. Bhattacharyya, Optimal controller parameter tuning of pss using sine-cosine algorithm, in Metaheuristic and Evolutionary Computation: Algorithms and Applications, Springer, 2020,337–360. Google Scholar |
[11] |
R. Devarapalli, B. Bhattacharyya and J. K. Saw, Controller parameter tuning of a single machine infinite bus system with static synchronous compensator using antlion optimization algorithm for the power system stability improvement, Advanced Control for Applications: Engineering and Industrial Systems, 2 (2020), e45. |
[12] |
R. Devarapalli, B. Bhattacharyya and N. K. Sinha, An intelligent egwo-sca-cs algorithm for pss parameter tuning under system uncertainties, International Journal of Intelligent Systems, 35 (2020), 1520-1569. Google Scholar |
[13] |
R. Devarapalli, B. Bhattacharyya, N. K. Sinha and B. Dey, Amended gwo approach based multi-machine power system stability enhancement, ISA Transactions. Google Scholar |
[14] |
M. Ebeed, S. Kamel and H. Youssef, Optimal setting of statcom based on voltage stability improvement and power loss minimization using moth-flame algorithm, in 2016 Eighteenth International Middle East Power Systems Conference (MEPCON), IEEE, 2016,815–820. Google Scholar |
[15] |
A. A. El-Fergany and H. M. Hasanien, Salp swarm optimizer to solve optimal power flow comprising voltage stability analysis, Neural Computing and Applications, 32 (2020), 5267-5283. Google Scholar |
[16] |
S. Feng, P. Jiang and X. Wu, Suppression of power system forced oscillations based on pss with proportional-resonant controller, International Transactions on Electrical Energy Systems, 27 (2017), e2328. Google Scholar |
[17] |
B. Hekimoğlu, Sine-cosine algorithm-based optimization for automatic voltage regulator system, Transactions of the Institute of Measurement and Control, 41 (2019), 1761-1771. Google Scholar |
[18] |
V. K. Kamboj, A novel hybrid pso–gwo approach for unit commitment problem, Neural Computing and Applications, 27 (2016), 1643-1655. Google Scholar |
[19] |
R. Khosravanian, V. Mansouri, D. A. Wood and M. R. Alipour, A comparative study of several metaheuristic algorithms for optimizing complex 3-d well-path designs, Journal of Petroleum Exploration and Production Technology, 8 (2018), 1487-1503. Google Scholar |
[20] |
P. Kundur, N. J. Balu and M. G. Lauby, Power System Stability and Control, Vol. 7, McGraw-hill New York, 1994. Google Scholar |
[21] |
Z. Li, D. Zou and Z. Kong, A harmony search variant and a useful constraint handling method for the dynamic economic emission dispatch problems considering transmission loss, Engineering Applications of Artificial Intelligence, 84 (2019), 18-40. Google Scholar |
[22] |
S. Mirjalili, Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowledge-Based Systems, 89 (2015), 228-249. Google Scholar |
[23] |
S. Mirjalili, S. M. Mirjalili and A. Lewis, Grey wolf optimizer, Advances in Engineering Software, 69 (2014), 46-61. Google Scholar |
[24] |
M. Molga and C. Smutnicki, Test functions for optimization needs, Test Functions for Optimization Needs, 101 (2005), 48. Google Scholar |
[25] |
K. Padiyar et al., Power System Dynamics: Stability and Control, John Wiley New York, 1996. Google Scholar |
[26] |
B. V. Patil, L. P. M. I. Sampath, A. Krishnan and F. Y. Eddy, Decentralized nonlinear model predictive control of a multimachine power system, International Journal of Electrical Power & Energy Systems, 106 (2019), 358-372. Google Scholar |
[27] |
M. H. Qais, H. M. Hasanien and S. Alghuwainem, Augmented grey wolf optimizer for grid-connected pmsg-based wind energy conversion systems, Applied Soft Computing, 69 (2018), 504-515. Google Scholar |
[28] |
M. Rahmatian and S. Seyedtabaii, Multi-machine optimal power system stabilizers design based on system stability and nonlinearity indices using hyper-spherical search method, International Journal of Electrical Power & Energy Systems, 105 (2019), 729-740. Google Scholar |
[29] |
S. Raj and B. Bhattacharyya, Optimal placement of tcsc and svc for reactive power planning using whale optimization algorithm, Swarm and Evolutionary Computation, 40 (2018), 131-143. Google Scholar |
[30] |
A. Salgotra and S. Pan, Model based pi power system stabilizer design for damping low frequency oscillations in power systems, ISA Transactions, 76 (2018), 110-121. Google Scholar |
[31] |
M. Sarailoo, N. E. Wu and J. S. Bay, Transient stability assessment of large lossy power systems, IET Generation, Transmission & Distribution, 12 (2017), 1822-1830. Google Scholar |
[32] |
S. Saurav, V. K. Gupta and S. K. Mishra, Moth-flame optimization based algorithm for facts devices allocation in a power system, in 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), IEEE, 2017, 1–7. Google Scholar |
[33] |
I. Stojanović, I. Brajević, P. S. Stanimirović, L. A. Kazakovtsev and Z. Zdravev, Application of heuristic and metaheuristic algorithms in solving constrained weber problem with feasible region bounded by arcs, Mathematical Problems in Engineering, 2017.
doi: 10.1155/2017/8306732. |
[34] |
R. K. Varma, Introduction to facts controllers, in 2009 IEEE/PES Power Systems Conference and Exposition, IEEE, 2009, 1–6. Google Scholar |
[35] |
Z. Wang, Z. Liu, J. Wang, X. Jiang, S. Liu, Y. Liu, G. Sheng and T. Liu, The application of analytical mechanics in a multimachine power system, Turkish Journal of Electrical Engineering & Computer Sciences, 26 (2018), 1530-1540. Google Scholar |
[36] |
D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation, 1 (1997), 67-82. Google Scholar |
[37] |
G. Yuan and W. Yang, Study on optimization of economic dispatching of electric power system based on hybrid intelligent algorithms (pso and afsa), Energy, 183 (2019), 926-935. Google Scholar |
[38] |
P. Zhao, W. Yao, S. Wang, J. Wen and S. Cheng, Decentralized nonlinear synergetic power system stabilizers design for power system stability enhancement, International Transactions on Electrical Energy Systems, 24 (2014), 1356-1368. Google Scholar |
show all references
References:
[1] |
http://socr.ucla.edu/Applets.dir/F_Table.html. Google Scholar |
[2] |
V. S. Aragón, S. C. Esquivel and C. C. Coello,
An immune algorithm with power redistribution for solving economic dispatch problems, Information Sciences, 295 (2015), 609-632.
doi: 10.1016/j.ins.2014.10.026. |
[3] |
M. Basu, Squirrel search algorithm for multi-region combined heat and power economic dispatch incorporating renewable energy sources, Energy, 182 (2019), 296-305. Google Scholar |
[4] |
A. Cuevas, M. Febrero and R. Fraiman,
An anova test for functional data, Computational Statistics & Data Analysis, 47 (2004), 111-122.
doi: 10.1016/j.csda.2003.10.021. |
[5] |
J. Derrac, S. García, D. Molina and F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm and Evolutionary Computation, 1 (2011), 3-18. Google Scholar |
[6] |
R. Devarapalli and B. Bhattacharyya, Application of modified harris hawks optimization in power system oscillations damping controller design, in 2019 8th International Conference on Power Systems (ICPS), IEEE, (2019), 1–6. Google Scholar |
[7] |
R. Devarapalli and B. Bhattacharyya, A framework for $h_{2} /h_\infty$ synthesis in damping power network oscillations with statcom, Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 1–22. Google Scholar |
[8] |
R. Devarapalli and B. Bhattacharyya, Optimal parameter tuning of power oscillation damper by mhho algorithm, in 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP), IEEE, 2019, 1–7.
doi: 10.1007/978-981-13-1816-0. |
[9] |
R. Devarapalli and B. Bhattacharyya, A hybrid modified grey wolf optimization-sine cosine algorithm-based power system stabilizer parameter tuning in a multimachine power system, Optimal Control Applications and Methods. Google Scholar |
[10] |
R. Devarapalli and B. Bhattacharyya, Optimal controller parameter tuning of pss using sine-cosine algorithm, in Metaheuristic and Evolutionary Computation: Algorithms and Applications, Springer, 2020,337–360. Google Scholar |
[11] |
R. Devarapalli, B. Bhattacharyya and J. K. Saw, Controller parameter tuning of a single machine infinite bus system with static synchronous compensator using antlion optimization algorithm for the power system stability improvement, Advanced Control for Applications: Engineering and Industrial Systems, 2 (2020), e45. |
[12] |
R. Devarapalli, B. Bhattacharyya and N. K. Sinha, An intelligent egwo-sca-cs algorithm for pss parameter tuning under system uncertainties, International Journal of Intelligent Systems, 35 (2020), 1520-1569. Google Scholar |
[13] |
R. Devarapalli, B. Bhattacharyya, N. K. Sinha and B. Dey, Amended gwo approach based multi-machine power system stability enhancement, ISA Transactions. Google Scholar |
[14] |
M. Ebeed, S. Kamel and H. Youssef, Optimal setting of statcom based on voltage stability improvement and power loss minimization using moth-flame algorithm, in 2016 Eighteenth International Middle East Power Systems Conference (MEPCON), IEEE, 2016,815–820. Google Scholar |
[15] |
A. A. El-Fergany and H. M. Hasanien, Salp swarm optimizer to solve optimal power flow comprising voltage stability analysis, Neural Computing and Applications, 32 (2020), 5267-5283. Google Scholar |
[16] |
S. Feng, P. Jiang and X. Wu, Suppression of power system forced oscillations based on pss with proportional-resonant controller, International Transactions on Electrical Energy Systems, 27 (2017), e2328. Google Scholar |
[17] |
B. Hekimoğlu, Sine-cosine algorithm-based optimization for automatic voltage regulator system, Transactions of the Institute of Measurement and Control, 41 (2019), 1761-1771. Google Scholar |
[18] |
V. K. Kamboj, A novel hybrid pso–gwo approach for unit commitment problem, Neural Computing and Applications, 27 (2016), 1643-1655. Google Scholar |
[19] |
R. Khosravanian, V. Mansouri, D. A. Wood and M. R. Alipour, A comparative study of several metaheuristic algorithms for optimizing complex 3-d well-path designs, Journal of Petroleum Exploration and Production Technology, 8 (2018), 1487-1503. Google Scholar |
[20] |
P. Kundur, N. J. Balu and M. G. Lauby, Power System Stability and Control, Vol. 7, McGraw-hill New York, 1994. Google Scholar |
[21] |
Z. Li, D. Zou and Z. Kong, A harmony search variant and a useful constraint handling method for the dynamic economic emission dispatch problems considering transmission loss, Engineering Applications of Artificial Intelligence, 84 (2019), 18-40. Google Scholar |
[22] |
S. Mirjalili, Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowledge-Based Systems, 89 (2015), 228-249. Google Scholar |
[23] |
S. Mirjalili, S. M. Mirjalili and A. Lewis, Grey wolf optimizer, Advances in Engineering Software, 69 (2014), 46-61. Google Scholar |
[24] |
M. Molga and C. Smutnicki, Test functions for optimization needs, Test Functions for Optimization Needs, 101 (2005), 48. Google Scholar |
[25] |
K. Padiyar et al., Power System Dynamics: Stability and Control, John Wiley New York, 1996. Google Scholar |
[26] |
B. V. Patil, L. P. M. I. Sampath, A. Krishnan and F. Y. Eddy, Decentralized nonlinear model predictive control of a multimachine power system, International Journal of Electrical Power & Energy Systems, 106 (2019), 358-372. Google Scholar |
[27] |
M. H. Qais, H. M. Hasanien and S. Alghuwainem, Augmented grey wolf optimizer for grid-connected pmsg-based wind energy conversion systems, Applied Soft Computing, 69 (2018), 504-515. Google Scholar |
[28] |
M. Rahmatian and S. Seyedtabaii, Multi-machine optimal power system stabilizers design based on system stability and nonlinearity indices using hyper-spherical search method, International Journal of Electrical Power & Energy Systems, 105 (2019), 729-740. Google Scholar |
[29] |
S. Raj and B. Bhattacharyya, Optimal placement of tcsc and svc for reactive power planning using whale optimization algorithm, Swarm and Evolutionary Computation, 40 (2018), 131-143. Google Scholar |
[30] |
A. Salgotra and S. Pan, Model based pi power system stabilizer design for damping low frequency oscillations in power systems, ISA Transactions, 76 (2018), 110-121. Google Scholar |
[31] |
M. Sarailoo, N. E. Wu and J. S. Bay, Transient stability assessment of large lossy power systems, IET Generation, Transmission & Distribution, 12 (2017), 1822-1830. Google Scholar |
[32] |
S. Saurav, V. K. Gupta and S. K. Mishra, Moth-flame optimization based algorithm for facts devices allocation in a power system, in 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), IEEE, 2017, 1–7. Google Scholar |
[33] |
I. Stojanović, I. Brajević, P. S. Stanimirović, L. A. Kazakovtsev and Z. Zdravev, Application of heuristic and metaheuristic algorithms in solving constrained weber problem with feasible region bounded by arcs, Mathematical Problems in Engineering, 2017.
doi: 10.1155/2017/8306732. |
[34] |
R. K. Varma, Introduction to facts controllers, in 2009 IEEE/PES Power Systems Conference and Exposition, IEEE, 2009, 1–6. Google Scholar |
[35] |
Z. Wang, Z. Liu, J. Wang, X. Jiang, S. Liu, Y. Liu, G. Sheng and T. Liu, The application of analytical mechanics in a multimachine power system, Turkish Journal of Electrical Engineering & Computer Sciences, 26 (2018), 1530-1540. Google Scholar |
[36] |
D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation, 1 (1997), 67-82. Google Scholar |
[37] |
G. Yuan and W. Yang, Study on optimization of economic dispatching of electric power system based on hybrid intelligent algorithms (pso and afsa), Energy, 183 (2019), 926-935. Google Scholar |
[38] |
P. Zhao, W. Yao, S. Wang, J. Wen and S. Cheng, Decentralized nonlinear synergetic power system stabilizers design for power system stability enhancement, International Transactions on Electrical Energy Systems, 24 (2014), 1356-1368. Google Scholar |











Suggested Algorithm | Performance comparison with algorithm | Problem solution | Considered Test system | Ref. |
SCA | ZN, DE, ABC, BBO | controller parameters of AVR system | Sample test system | [17] |
SSA | MSA, DE, MDE, PSO, TSA | OPF problem with voltage stability objective | IEEE 57- and 118-bus | [15] |
Variant of HSA | Other variants of HSA | Economic Emission problem | 5, 6, 10, 14- test systems | [21] |
SSOA | GWO, PSO, DE, EP | MRCHPED problem | three region test system | [3] |
SCA | ALO, DA | Power system oscillation damping | 2 machine with STATCOM | [10] |
Hybrid PSO-AFSA | PSO, AFSA | ELD problem | 5, 10 Units system | [37] |
ALO | PSO | PSS parameter tuning | SMIB with STATCOM | [11] |
IA | Algorithms from literature | Economic Dispatch problem | 8 test systems | [2] |
HHO modified | GWO, WOA, ALO | Stabilizers coordination | SMIB with STATCOM | [6,8] |
Suggested Algorithm | Performance comparison with algorithm | Problem solution | Considered Test system | Ref. |
SCA | ZN, DE, ABC, BBO | controller parameters of AVR system | Sample test system | [17] |
SSA | MSA, DE, MDE, PSO, TSA | OPF problem with voltage stability objective | IEEE 57- and 118-bus | [15] |
Variant of HSA | Other variants of HSA | Economic Emission problem | 5, 6, 10, 14- test systems | [21] |
SSOA | GWO, PSO, DE, EP | MRCHPED problem | three region test system | [3] |
SCA | ALO, DA | Power system oscillation damping | 2 machine with STATCOM | [10] |
Hybrid PSO-AFSA | PSO, AFSA | ELD problem | 5, 10 Units system | [37] |
ALO | PSO | PSS parameter tuning | SMIB with STATCOM | [11] |
IA | Algorithms from literature | Economic Dispatch problem | 8 test systems | [2] |
HHO modified | GWO, WOA, ALO | Stabilizers coordination | SMIB with STATCOM | [6,8] |
$\textbf{Functions}$ | $\textbf{PSO}$ | $\textbf{MFO}$ | $\textbf{GWO}$ | $\textbf{AGWO}$ | $\textbf{AGWOPSO}$ | |
$\textbf{F1: Sphere}$ | Mean | 1.21E-27 | 1.26E-25 | 1.81E-05 | 2.74E-25 | 9.59E-06 |
SD | 1.40E-27 | 2.17E-25 | 8.12E-06 | 5.90E-25 | 4.67E-06 | |
Best | 7.00E-30 | 2.04E-27 | 6.75E-06 | 7.01E-27 | 3.26E-06 | |
Worst | 5.18E-27 | 1.11E-24 | 3.63E-05 | 3.01E-24 | 2.08E-05 | |
$\textbf{F2: Schwefel 2.22}$ | Mean | 1.18E-16 | 1.45E-15 | 1.63E-03 | 1.76E-15 | 1.09E-03 |
SD | 7.79E-17 | 1.51E-15 | 5.46E-04 | 1.15E-15 | 2.13E-04 | |
Best | 1.10E-17 | 2.02E-16 | 9.45E-04 | 4.12E-16 | 7.33E-04 | |
Worst | 3.57E-16 | 6.04E-15 | 3.83E-03 | 6.38E-15 | 1.52E-03 | |
$\textbf{F3: Schwefel 1.2}$ | Mean | 1.30E-05 | 2.32E-04 | 4.84E-01 | 1.49E-05 | 1.42E-01 |
SD | 3.68E-05 | 5.55E-04 | 5.71E-01 | 2.35E-05 | 1.12E-01 | |
Best | 2.15E-09 | 3.43E-07 | 2.36E-02 | 7.99E-09 | 8.57E-03 | |
Worst | 1.79E-04 | 2.46E-03 | 3.25E+00 | 9.74E-05 | 4.45E-01 | |
$\textbf{F4: Schwefel 2.21}$ | Mean | 1.15E-06 | 2.19E-06 | 3.30E-01 | 1.93E-06 | 1.90E-01 |
SD | 1.09E-06 | 2.82E-06 | 1.09E-01 | 1.18E-06 | 4.73E-02 | |
Best | 1.29E-07 | 3.03E-07 | 1.62E-01 | 1.66E-07 | 1.11E-01 | |
Worst | 4.80E-06 | 1.54E-05 | 5.45E-01 | 4.72E-06 | 2.78E-01 | |
$\textbf{F5: Rosenbrock}$ | Mean | 2.95E+01 | 2.95E+01 | 3.11E+01 | 2.97E+01 | 3.85E+01 |
SD | 7.79E-01 | 8.06E-01 | 6.25E-01 | 9.26E-01 | 2.14E+01 | |
Best | 2.84E+01 | 2.81E+01 | 2.97E+01 | 2.78E+01 | 2.89E+01 | |
Worst | 3.14E+01 | 3.14E+01 | 3.18E+01 | 3.14E+01 | 1.03E+02 | |
$\textbf{F6: Step}$ | Mean | 8.33E-01 | 8.07E-01 | 4.48E+00 | 1.15E+00 | 5.20E+00 |
SD | 4.07E-01 | 4.69E-01 | 5.37E-01 | 5.07E-01 | 6.25E-01 | |
Best | 6.19E-05 | 2.74E-07 | 3.58E+00 | 2.55E-01 | 3.86E+00 | |
Worst | 1.64E+00 | 1.82E+00 | 5.23E+00 | 2.46E+00 | 6.31E+00 | |
$\textbf{F7: Quartic}$ | Mean | 1.67E-03 | 2.11E-03 | 3.53E-02 | 2.60E-03 | 2.93E-02 |
SD | 9.55E-04 | 1.27E-03 | 9.30E-03 | 8.54E-04 | 8.34E-03 | |
Best | 3.43E-04 | 8.07E-04 | 2.13E-02 | 1.11E-03 | 1.39E-02 | |
Worst | 4.54E-03 | 6.70E-03 | 6.09E-02 | 4.59E-03 | 5.91E-02 | |
$\textbf{F8: Schwefel}$ | Mean | -6.58E+03 | -6.33E+03 | -5.72E+03 | -1.24E+04 | -1.25E+04 |
SD | 1.15E+03 | 1.23E+03 | 1.09E+03 | 8.64E+02 | 1.05E+03 | |
Best | -8.55E+03 | -8.26E+03 | -7.71E+03 | -1.37E+04 | -1.35E+04 | |
Worst | -3.34E+03 | -3.64E+03 | -2.28E+03 | -9.89E+03 | -7.61E+03 | |
$\textbf{F9: Rastrigin}$ | Mean | 2.20E+00 | 3.31E+00 | 5.81E+01 | 5.17E+00 | 4.07E+01 |
SD | 3.09E+00 | 4.75E+00 | 4.16E+01 | 5.68E+00 | 1.12E+01 | |
Best | 6.20E-14 | 6.20E-14 | 3.21E+01 | 6.20E-14 | 2.11E+01 | |
Worst | 1.24E+01 | 1.63E+01 | 2.69E+02 | 1.78E+01 | 7.27E+01 | |
$\textbf{F10: Ackley}$ | Mean | 1.15E-13 | 2.24E-13 | 3.78E+00 | 2.62E-13 | 3.73E+00 |
SD | 1.95E-14 | 6.46E-14 | 1.01E-01 | 6.88E-14 | 8.85E-02 | |
Best | 8.24E-14 | 1.25E-13 | 3.35E+00 | 1.52E-13 | 3.50E+00 | |
Worst | 1.56E-13 | 3.77E-13 | 3.90E+00 | 4.23E-13 | 3.85E+00 | |
$\textbf{F11: Griewank}$ | Mean | 4.34E-03 | 3.58E-03 | 9.42E-03 | 6.42E-03 | 6.74E-03 |
SD | 8.26E-03 | 7.71E-03 | 1.17E-02 | 1.10E-02 | 1.05E-02 | |
Best | 0.00E+00 | 0.00E+00 | 1.25E-05 | 0.00E+00 | 5.45E-06 | |
Worst | 2.52E-02 | 2.78E-02 | 2.65E-02 | 4.36E-02 | 2.68E-02 | |
$\textbf{F12: Penalized}$ | Mean | 4.72E-02 | 3.70E-02 | 4.97E+00 | 6.52E-02 | 5.02E+00 |
SD | 2.32E-02 | 1.44E-02 | 1.38E+00 | 3.38E-02 | 1.45E+00 | |
Best | 7.19E-03 | 1.39E-02 | 2.08E+00 | 1.11E-05 | 2.43E+00 | |
Worst | 1.29E-01 | 7.27E-02 | 8.08E+00 | 1.24E-01 | 8.91E+00 | |
$\textbf{F13: Penalize 2}$ | Mean | 7.08E-01 | 6.16E-01 | 3.52E+00 | 7.88E-01 | 2.28E+00 |
SD | 2.93E-01 | 2.06E-01 | 5.98E-01 | 2.66E-01 | 7.11E-01 | |
Best | 2.17E-01 | 1.02E-01 | 2.35E+00 | 3.38E-01 | 9.85E-01 | |
Worst | 1.37E+00 | 9.03E-01 | 4.91E+00 | 1.43E+00 | 3.37E+00 | |
$\textbf{F14: Foxholes}$ | Mean | 6.63E+00 | 7.34E+00 | 1.11E+01 | 6.73E+00 | 1.37E+01 |
SD | 5.22E+00 | 5.43E+00 | 4.50E+00 | 5.56E+00 | 6.05E+00 | |
Best | 1.09E+00 | 1.09E+00 | 2.17E+00 | 1.09E+00 | 1.09E+00 | |
Worst | 1.38E+01 | 1.38E+01 | 2.00E+01 | 1.38E+01 | 2.50E+01 | |
$\textbf{F15: Kowalik}$ | Mean | 6.26E-03 | 5.54E-03 | 2.32E-03 | 4.38E-04 | 1.53E-03 |
SD | 9.79E-03 | 9.36E-03 | 5.66E-03 | 3.21E-04 | 6.23E-03 | |
Best | 3.36E-04 | 3.36E-04 | 3.35E-04 | 3.36E-04 | 3.35E-04 | |
Worst | 2.22E-02 | 2.22E-02 | 2.29E-02 | 1.74E-03 | 3.45E-02 | |
$\textbf{F16: Six-hump }\; \textbf{Camel-Back}$ | Mean | -1.13E+00 | -1.13E+00 | -1.12E+00 | -1.13E+00 | -1.12E+00 |
SD | 3.15E-08 | 9.19E-12 | 8.76E-03 | 4.23E-08 | 8.76E-03 | |
Best | -1.13E+00 | -1.13E+00 | -1.13E+00 | -1.13E+00 | -1.13E+00 | |
Worst | -1.13E+00 | -1.13E+00 | -1.09E+00 | -1.13E+00 | -1.09E+00 | |
$\textbf{F17: Branin}$ | Mean | 4.34E-01 | 4.34E-01 | 5.22E-01 | 4.34E-01 | 4.34E-01 |
SD | 4.68E-06 | 3.05E-04 | 4.82E-01 | 1.62E-06 | 3.12E-07 | |
Best | 4.34E-01 | 4.34E-01 | 4.34E-01 | 4.34E-01 | 4.34E-01 | |
Worst | 4.34E-01 | 4.35E-01 | 3.07E+00 | 4.34E-01 | 4.34E-01 | |
$\textbf{F18: Goldstein-Price}$ | Mean | 3.27E+00 | 3.27E+00 | 4.26E+00 | 3.27E+00 | 1.41E+01 |
SD | 7.76E-05 | 5.59E-05 | 5.38E+00 | 6.06E-05 | 1.44E+01 | |
Best | 3.27E+00 | 3.27E+00 | 3.27E+00 | 3.27E+00 | 3.27E+00 | |
Worst | 3.27E+00 | 3.27E+00 | 3.27E+01 | 3.27E+00 | 3.27E+01 | |
$\textbf{F19: Hartman 3}$ | Mean | -4.21E+00 | -4.21E+00 | -4.21E+00 | -4.21E+00 | -4.21E+00 |
SD | 2.19E-03 | 2.30E-03 | 6.26E-04 | 4.28E-05 | 7.99E-06 | |
Best | -4.21E+00 | -4.21E+00 | -4.21E+00 | -4.21E+00 | -4.21E+00 | |
Worst | -4.21E+00 | -4.21E+00 | -4.21E+00 | -4.21E+00 | -4.21E+00 | |
$\textbf{F20: Hartman 6}$ | Mean | -3.53E+00 | -3.57E+00 | -3.59E+00 | -3.62E+00 | -3.62E+00 |
SD | 9.68E-02 | 6.93E-02 | 6.05E-02 | 2.38E-02 | 3.29E-02 | |
Best | -3.62E+00 | -3.62E+00 | -3.62E+00 | -3.62E+00 | -3.62E+00 | |
Worst | -3.37E+00 | -3.42E+00 | -3.49E+00 | -3.49E+00 | -3.49E+00 | |
$\textbf{F21: Shekel5}$ | Mean | -1.02E+01 | -1.03E+01 | -7.45E+00 | -9.52E+00 | -5.84E+00 |
SD | 2.10E+00 | 1.91E+00 | 4.00E+00 | 2.67E+00 | 3.43E+00 | |
Best | -1.11E+01 | -1.11E+01 | -1.11E+01 | -1.11E+01 | -1.11E+01 | |
Worst | -5.52E+00 | -5.52E+00 | -2.87E+00 | -2.93E+00 | -1.48E+00 | |
$\textbf{F22: Shekel7}$ | Mean | -1.13E+01 | -1.14E+01 | -7.49E+00 | -1.00E+01 | -5.89E+00 |
SD | 9.28E-04 | 2.21E-07 | 4.20E+00 | 2.48E+00 | 3.30E+00 | |
Best | -1.14E+01 | -1.14E+01 | -1.14E+01 | -1.14E+01 | -1.14E+01 | |
Worst | -1.13E+01 | -1.14E+01 | -3.00E+00 | -5.55E+00 | -1.53E+00 | |
$\textbf{F23: Shekel10}$ | Mean | -1.11E+01 | -1.13E+01 | -8.14E+00 | -1.03E+01 | -7.10E+00 |
SD | 1.50E+00 | 1.07E+00 | 4.20E+00 | 2.51E+00 | 4.02E+00 | |
Best | -1.15E+01 | -1.15E+01 | -1.15E+01 | -1.15E+01 | -1.15E+01 | |
Worst | -5.60E+00 | -5.65E+00 | -2.64E+00 | -4.09E+00 | -1.86E+00 |
$\textbf{Functions}$ | $\textbf{PSO}$ | $\textbf{MFO}$ | $\textbf{GWO}$ | $\textbf{AGWO}$ | $\textbf{AGWOPSO}$ | |
$\textbf{F1: Sphere}$ | Mean | 1.21E-27 | 1.26E-25 | 1.81E-05 | 2.74E-25 | 9.59E-06 |
SD | 1.40E-27 | 2.17E-25 | 8.12E-06 | 5.90E-25 | 4.67E-06 | |
Best | 7.00E-30 | 2.04E-27 | 6.75E-06 | 7.01E-27 | 3.26E-06 | |
Worst | 5.18E-27 | 1.11E-24 | 3.63E-05 | 3.01E-24 | 2.08E-05 | |
$\textbf{F2: Schwefel 2.22}$ | Mean | 1.18E-16 | 1.45E-15 | 1.63E-03 | 1.76E-15 | 1.09E-03 |
SD | 7.79E-17 | 1.51E-15 | 5.46E-04 | 1.15E-15 | 2.13E-04 | |
Best | 1.10E-17 | 2.02E-16 | 9.45E-04 | 4.12E-16 | 7.33E-04 | |
Worst | 3.57E-16 | 6.04E-15 | 3.83E-03 | 6.38E-15 | 1.52E-03 | |
$\textbf{F3: Schwefel 1.2}$ | Mean | 1.30E-05 | 2.32E-04 | 4.84E-01 | 1.49E-05 | 1.42E-01 |
SD | 3.68E-05 | 5.55E-04 | 5.71E-01 | 2.35E-05 | 1.12E-01 | |
Best | 2.15E-09 | 3.43E-07 | 2.36E-02 | 7.99E-09 | 8.57E-03 | |
Worst | 1.79E-04 | 2.46E-03 | 3.25E+00 | 9.74E-05 | 4.45E-01 | |
$\textbf{F4: Schwefel 2.21}$ | Mean | 1.15E-06 | 2.19E-06 | 3.30E-01 | 1.93E-06 | 1.90E-01 |
SD | 1.09E-06 | 2.82E-06 | 1.09E-01 | 1.18E-06 | 4.73E-02 | |
Best | 1.29E-07 | 3.03E-07 | 1.62E-01 | 1.66E-07 | 1.11E-01 | |
Worst | 4.80E-06 | 1.54E-05 | 5.45E-01 | 4.72E-06 | 2.78E-01 | |
$\textbf{F5: Rosenbrock}$ | Mean | 2.95E+01 | 2.95E+01 | 3.11E+01 | 2.97E+01 | 3.85E+01 |
SD | 7.79E-01 | 8.06E-01 | 6.25E-01 | 9.26E-01 | 2.14E+01 | |
Best | 2.84E+01 | 2.81E+01 | 2.97E+01 | 2.78E+01 | 2.89E+01 | |
Worst | 3.14E+01 | 3.14E+01 | 3.18E+01 | 3.14E+01 | 1.03E+02 | |
$\textbf{F6: Step}$ | Mean | 8.33E-01 | 8.07E-01 | 4.48E+00 | 1.15E+00 | 5.20E+00 |
SD | 4.07E-01 | 4.69E-01 | 5.37E-01 | 5.07E-01 | 6.25E-01 | |
Best | 6.19E-05 | 2.74E-07 | 3.58E+00 | 2.55E-01 | 3.86E+00 | |
Worst | 1.64E+00 | 1.82E+00 | 5.23E+00 | 2.46E+00 | 6.31E+00 | |
$\textbf{F7: Quartic}$ | Mean | 1.67E-03 | 2.11E-03 | 3.53E-02 | 2.60E-03 | 2.93E-02 |
SD | 9.55E-04 | 1.27E-03 | 9.30E-03 | 8.54E-04 | 8.34E-03 | |
Best | 3.43E-04 | 8.07E-04 | 2.13E-02 | 1.11E-03 | 1.39E-02 | |
Worst | 4.54E-03 | 6.70E-03 | 6.09E-02 | 4.59E-03 | 5.91E-02 | |
$\textbf{F8: Schwefel}$ | Mean | -6.58E+03 | -6.33E+03 | -5.72E+03 | -1.24E+04 | -1.25E+04 |
SD | 1.15E+03 | 1.23E+03 | 1.09E+03 | 8.64E+02 | 1.05E+03 | |
Best | -8.55E+03 | -8.26E+03 | -7.71E+03 | -1.37E+04 | -1.35E+04 | |
Worst | -3.34E+03 | -3.64E+03 | -2.28E+03 | -9.89E+03 | -7.61E+03 | |
$\textbf{F9: Rastrigin}$ | Mean | 2.20E+00 | 3.31E+00 | 5.81E+01 | 5.17E+00 | 4.07E+01 |
SD | 3.09E+00 | 4.75E+00 | 4.16E+01 | 5.68E+00 | 1.12E+01 | |
Best | 6.20E-14 | 6.20E-14 | 3.21E+01 | 6.20E-14 | 2.11E+01 | |
Worst | 1.24E+01 | 1.63E+01 | 2.69E+02 | 1.78E+01 | 7.27E+01 | |
$\textbf{F10: Ackley}$ | Mean | 1.15E-13 | 2.24E-13 | 3.78E+00 | 2.62E-13 | 3.73E+00 |
SD | 1.95E-14 | 6.46E-14 | 1.01E-01 | 6.88E-14 | 8.85E-02 | |
Best | 8.24E-14 | 1.25E-13 | 3.35E+00 | 1.52E-13 | 3.50E+00 | |
Worst | 1.56E-13 | 3.77E-13 | 3.90E+00 | 4.23E-13 | 3.85E+00 | |
$\textbf{F11: Griewank}$ | Mean | 4.34E-03 | 3.58E-03 | 9.42E-03 | 6.42E-03 | 6.74E-03 |
SD | 8.26E-03 | 7.71E-03 | 1.17E-02 | 1.10E-02 | 1.05E-02 | |
Best | 0.00E+00 | 0.00E+00 | 1.25E-05 | 0.00E+00 | 5.45E-06 | |
Worst | 2.52E-02 | 2.78E-02 | 2.65E-02 | 4.36E-02 | 2.68E-02 | |
$\textbf{F12: Penalized}$ | Mean | 4.72E-02 | 3.70E-02 | 4.97E+00 | 6.52E-02 | 5.02E+00 |
SD | 2.32E-02 | 1.44E-02 | 1.38E+00 | 3.38E-02 | 1.45E+00 | |
Best | 7.19E-03 | 1.39E-02 | 2.08E+00 | 1.11E-05 | 2.43E+00 | |
Worst | 1.29E-01 | 7.27E-02 | 8.08E+00 | 1.24E-01 | 8.91E+00 | |
$\textbf{F13: Penalize 2}$ | Mean | 7.08E-01 | 6.16E-01 | 3.52E+00 | 7.88E-01 | 2.28E+00 |
SD | 2.93E-01 | 2.06E-01 | 5.98E-01 | 2.66E-01 | 7.11E-01 | |
Best | 2.17E-01 | 1.02E-01 | 2.35E+00 | 3.38E-01 | 9.85E-01 | |
Worst | 1.37E+00 | 9.03E-01 | 4.91E+00 | 1.43E+00 | 3.37E+00 | |
$\textbf{F14: Foxholes}$ | Mean | 6.63E+00 | 7.34E+00 | 1.11E+01 | 6.73E+00 | 1.37E+01 |
SD | 5.22E+00 | 5.43E+00 | 4.50E+00 | 5.56E+00 | 6.05E+00 | |
Best | 1.09E+00 | 1.09E+00 | 2.17E+00 | 1.09E+00 | 1.09E+00 | |
Worst | 1.38E+01 | 1.38E+01 | 2.00E+01 | 1.38E+01 | 2.50E+01 | |
$\textbf{F15: Kowalik}$ | Mean | 6.26E-03 | 5.54E-03 | 2.32E-03 | 4.38E-04 | 1.53E-03 |
SD | 9.79E-03 | 9.36E-03 | 5.66E-03 | 3.21E-04 | 6.23E-03 | |
Best | 3.36E-04 | 3.36E-04 | 3.35E-04 | 3.36E-04 | 3.35E-04 | |
Worst | 2.22E-02 | 2.22E-02 | 2.29E-02 | 1.74E-03 | 3.45E-02 | |
$\textbf{F16: Six-hump }\; \textbf{Camel-Back}$ | Mean | -1.13E+00 | -1.13E+00 | -1.12E+00 | -1.13E+00 | -1.12E+00 |
SD | 3.15E-08 | 9.19E-12 | 8.76E-03 | 4.23E-08 | 8.76E-03 | |
Best | -1.13E+00 | -1.13E+00 | -1.13E+00 | -1.13E+00 | -1.13E+00 | |
Worst | -1.13E+00 | -1.13E+00 | -1.09E+00 | -1.13E+00 | -1.09E+00 | |
$\textbf{F17: Branin}$ | Mean | 4.34E-01 | 4.34E-01 | 5.22E-01 | 4.34E-01 | 4.34E-01 |
SD | 4.68E-06 | 3.05E-04 | 4.82E-01 | 1.62E-06 | 3.12E-07 | |
Best | 4.34E-01 | 4.34E-01 | 4.34E-01 | 4.34E-01 | 4.34E-01 | |
Worst | 4.34E-01 | 4.35E-01 | 3.07E+00 | 4.34E-01 | 4.34E-01 | |
$\textbf{F18: Goldstein-Price}$ | Mean | 3.27E+00 | 3.27E+00 | 4.26E+00 | 3.27E+00 | 1.41E+01 |
SD | 7.76E-05 | 5.59E-05 | 5.38E+00 | 6.06E-05 | 1.44E+01 | |
Best | 3.27E+00 | 3.27E+00 | 3.27E+00 | 3.27E+00 | 3.27E+00 | |
Worst | 3.27E+00 | 3.27E+00 | 3.27E+01 | 3.27E+00 | 3.27E+01 | |
$\textbf{F19: Hartman 3}$ | Mean | -4.21E+00 | -4.21E+00 | -4.21E+00 | -4.21E+00 | -4.21E+00 |
SD | 2.19E-03 | 2.30E-03 | 6.26E-04 | 4.28E-05 | 7.99E-06 | |
Best | -4.21E+00 | -4.21E+00 | -4.21E+00 | -4.21E+00 | -4.21E+00 | |
Worst | -4.21E+00 | -4.21E+00 | -4.21E+00 | -4.21E+00 | -4.21E+00 | |
$\textbf{F20: Hartman 6}$ | Mean | -3.53E+00 | -3.57E+00 | -3.59E+00 | -3.62E+00 | -3.62E+00 |
SD | 9.68E-02 | 6.93E-02 | 6.05E-02 | 2.38E-02 | 3.29E-02 | |
Best | -3.62E+00 | -3.62E+00 | -3.62E+00 | -3.62E+00 | -3.62E+00 | |
Worst | -3.37E+00 | -3.42E+00 | -3.49E+00 | -3.49E+00 | -3.49E+00 | |
$\textbf{F21: Shekel5}$ | Mean | -1.02E+01 | -1.03E+01 | -7.45E+00 | -9.52E+00 | -5.84E+00 |
SD | 2.10E+00 | 1.91E+00 | 4.00E+00 | 2.67E+00 | 3.43E+00 | |
Best | -1.11E+01 | -1.11E+01 | -1.11E+01 | -1.11E+01 | -1.11E+01 | |
Worst | -5.52E+00 | -5.52E+00 | -2.87E+00 | -2.93E+00 | -1.48E+00 | |
$\textbf{F22: Shekel7}$ | Mean | -1.13E+01 | -1.14E+01 | -7.49E+00 | -1.00E+01 | -5.89E+00 |
SD | 9.28E-04 | 2.21E-07 | 4.20E+00 | 2.48E+00 | 3.30E+00 | |
Best | -1.14E+01 | -1.14E+01 | -1.14E+01 | -1.14E+01 | -1.14E+01 | |
Worst | -1.13E+01 | -1.14E+01 | -3.00E+00 | -5.55E+00 | -1.53E+00 | |
$\textbf{F23: Shekel10}$ | Mean | -1.11E+01 | -1.13E+01 | -8.14E+00 | -1.03E+01 | -7.10E+00 |
SD | 1.50E+00 | 1.07E+00 | 4.20E+00 | 2.51E+00 | 4.02E+00 | |
Best | -1.15E+01 | -1.15E+01 | -1.15E+01 | -1.15E+01 | -1.15E+01 | |
Worst | -5.60E+00 | -5.65E+00 | -2.64E+00 | -4.09E+00 | -1.86E+00 |
Algorithm | p-value | |
Light Load | ||
(Pe1=Pe2=0.3& Qe1=Qe2=0.1) | ||
AGWO-PSO Versus MFO | 1.7344e-06 | + |
AGWO-PSO Versus GWO | 1.7344e-06 | + |
AGWO-PSO Versus PSO | 1.7344e-06 | + |
AGWO-PSO Versus AGWO | 1.7344e-06 | + |
Nominal Load | ||
(Pe1=Pe2=0.8& Qe1=Qe2=0.6) | ||
AGWO-PSO Versus MFO | 1.7344e-06 | + |
AGWO-PSO Versus GWO | 1.7344e-06 | + |
AGWO-PSO Versus PSO | 1.7344e-06 | + |
AGWO-PSO Versus AGWO | 1.7344e-06 | + |
Heavy Load | ||
(Pe1=Pe2=1.3& Qe1=Qe2=1.0) | ||
AGWO-PSO Versus MFO | 1.7344e-06 | + |
AGWO-PSO Versus GWO | 1.7344e-06 | + |
AGWO-PSO Versus PSO | 1.7344e-06 | + |
AGWO-PSO Versus AGWO | 7.7122e-04 | + |
Algorithm | p-value | |
Light Load | ||
(Pe1=Pe2=0.3& Qe1=Qe2=0.1) | ||
AGWO-PSO Versus MFO | 1.7344e-06 | + |
AGWO-PSO Versus GWO | 1.7344e-06 | + |
AGWO-PSO Versus PSO | 1.7344e-06 | + |
AGWO-PSO Versus AGWO | 1.7344e-06 | + |
Nominal Load | ||
(Pe1=Pe2=0.8& Qe1=Qe2=0.6) | ||
AGWO-PSO Versus MFO | 1.7344e-06 | + |
AGWO-PSO Versus GWO | 1.7344e-06 | + |
AGWO-PSO Versus PSO | 1.7344e-06 | + |
AGWO-PSO Versus AGWO | 1.7344e-06 | + |
Heavy Load | ||
(Pe1=Pe2=1.3& Qe1=Qe2=1.0) | ||
AGWO-PSO Versus MFO | 1.7344e-06 | + |
AGWO-PSO Versus GWO | 1.7344e-06 | + |
AGWO-PSO Versus PSO | 1.7344e-06 | + |
AGWO-PSO Versus AGWO | 7.7122e-04 | + |
T11 | T21 | K1 | T12 | T22 | K2 | me | de | TOE | Jmin | ||
Light Load | MFO | 2 | 0.353621 | 17.1851 | 0.896599 | 2 | 50 | 0.877263 | 0 | 21.1012 | 20634.638 |
Pe1=Pe2=0.3 & | GWO | 1.99226 | 0.631084 | 20.0048 | 2 | 0.408557 | 7.68251 | 1 | 0.553048 | 19.8576 | 19744.427 |
PSO | 1.99616 | 0.531169 | 17.1061 | 1.99706 | 0.376092 | 7.67036 | 0.93685 | 0.471697 | 22.568 | 19790.2423 | |
AGWO | 2 | 0.814356 | 20.0335 | 0.223326 | 0.349201 | 0.145617 | 1 | 0.606624 | 20.511 | 19749.174 | |
Qe1=Qe2=0.1 | AGWO-PSO | 1.91829 | 0.315199 | 16.476 | 2 | 0.367394 | 7.72613 | 0.759916 | 0 | 21.5609 | 19657.1023 |
Nominal Load | MFO | 2 | 0.34587 | 6.5268 | 2 | 0.23173 | 4.0409 | 0.71636 | 1 | 25.2134 | 20069.6872 |
Pe1=Pe2=0.8 & | GWO | 2 | 0.20802 | 4.8299 | 2 | 0.18249 | 4.344 | 1 | 0.00080834 | 21.9609 | 19897.141 |
PSO | 2 | 0.34586 | 6.5267 | 2 | 0.23173 | 4.0409 | 0.71631 | 0.99996 | 23.2164 | 19918.5198 | |
AGWO | 2 | 0.30786 | 5.9268 | 2 | 0.22043 | 2.9841 | 0.71539 | 1 | 20.9591 | 19457.3614 | |
Qe1=Qe2=0.6 | AGWO-PSO | 2 | 0.21304 | 5.271 | 2 | 0.20313 | 5.4271 | 1 | 0 | 20.5927 | 19425.0108 |
Heavy Load | MFO | 2 | 0.12956 | 3.698 | 2 | 0.1436 | 5.036 | 1 | 0 | 21.3626 | 20880.619 |
Pe1=Pe2=1.3 & | GWO | 2 | 0.12949 | 3.7016 | 2 | 0.14394 | 5.0545 | 1 | 0.00074374 | 20.4907 | 20388.983 |
PSO | 0.709342 | 0.168539 | 19.6737 | 0.69435 | 0.174195 | 19.1828 | 0.235767 | 0 | 22.1254 | 20396.0086 | |
AGWO | 2 | 0.13122 | 3.7291 | 2 | 0.13306 | 4.9783 | 1 | 0 | 20.5043 | 20387.3276 | |
Qe1=Qe2=1.0 | AGWO-PSO | 2 | 0.12329 | 3.5156 | 2 | 0.14564 | 5.9558 | 1 | 0 | 22.1768 | 20387.1437 |
T11 | T21 | K1 | T12 | T22 | K2 | me | de | TOE | Jmin | ||
Light Load | MFO | 2 | 0.353621 | 17.1851 | 0.896599 | 2 | 50 | 0.877263 | 0 | 21.1012 | 20634.638 |
Pe1=Pe2=0.3 & | GWO | 1.99226 | 0.631084 | 20.0048 | 2 | 0.408557 | 7.68251 | 1 | 0.553048 | 19.8576 | 19744.427 |
PSO | 1.99616 | 0.531169 | 17.1061 | 1.99706 | 0.376092 | 7.67036 | 0.93685 | 0.471697 | 22.568 | 19790.2423 | |
AGWO | 2 | 0.814356 | 20.0335 | 0.223326 | 0.349201 | 0.145617 | 1 | 0.606624 | 20.511 | 19749.174 | |
Qe1=Qe2=0.1 | AGWO-PSO | 1.91829 | 0.315199 | 16.476 | 2 | 0.367394 | 7.72613 | 0.759916 | 0 | 21.5609 | 19657.1023 |
Nominal Load | MFO | 2 | 0.34587 | 6.5268 | 2 | 0.23173 | 4.0409 | 0.71636 | 1 | 25.2134 | 20069.6872 |
Pe1=Pe2=0.8 & | GWO | 2 | 0.20802 | 4.8299 | 2 | 0.18249 | 4.344 | 1 | 0.00080834 | 21.9609 | 19897.141 |
PSO | 2 | 0.34586 | 6.5267 | 2 | 0.23173 | 4.0409 | 0.71631 | 0.99996 | 23.2164 | 19918.5198 | |
AGWO | 2 | 0.30786 | 5.9268 | 2 | 0.22043 | 2.9841 | 0.71539 | 1 | 20.9591 | 19457.3614 | |
Qe1=Qe2=0.6 | AGWO-PSO | 2 | 0.21304 | 5.271 | 2 | 0.20313 | 5.4271 | 1 | 0 | 20.5927 | 19425.0108 |
Heavy Load | MFO | 2 | 0.12956 | 3.698 | 2 | 0.1436 | 5.036 | 1 | 0 | 21.3626 | 20880.619 |
Pe1=Pe2=1.3 & | GWO | 2 | 0.12949 | 3.7016 | 2 | 0.14394 | 5.0545 | 1 | 0.00074374 | 20.4907 | 20388.983 |
PSO | 0.709342 | 0.168539 | 19.6737 | 0.69435 | 0.174195 | 19.1828 | 0.235767 | 0 | 22.1254 | 20396.0086 | |
AGWO | 2 | 0.13122 | 3.7291 | 2 | 0.13306 | 4.9783 | 1 | 0 | 20.5043 | 20387.3276 | |
Qe1=Qe2=1.0 | AGWO-PSO | 2 | 0.12329 | 3.5156 | 2 | 0.14564 | 5.9558 | 1 | 0 | 22.1768 | 20387.1437 |
![]() |
![]() |
[1] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 |
[2] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[3] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[4] |
Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194 |
[5] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[6] |
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 |
[7] |
Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023 |
[8] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011 |
[9] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[10] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[11] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[12] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[13] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[14] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[15] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[16] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[17] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[18] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[19] |
Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329 |
[20] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]