
-
Previous Article
An alternate gradient method for optimization problems with orthogonality constraints
- NACO Home
- This Issue
-
Next Article
Solving nonlinear differential equations using hybrid method between Lyapunov's artificial small parameter and continuous particle swarm optimization
Direct method to solve linear-quadratic optimal control problems
1. | Laboratory of Pure and Applied Mathematics, University of Laghouat, Bp 37G, Ghardaia road, 03000, Laghouat, Algeria |
2. | Laboratory L2CSP, University of Tizi-Ouzou, 15000, Tizi-Ouzou, Algeria |
3. | IRIT-ENSEEIHT, Université Fédérale Toulouse-Midi-Pyrénées, France |
In this work, we have proposed a new approach for solving the linear-quadratic optimal control problem, where the quality criterion is a quadratic function, which can be convex or non-convex. In this approach, we transform the continuous optimal control problem into a quadratic optimization problem using the Cauchy discretization technique, then we solve it with the active-set method. In order to study the efficiency and the accuracy of the proposed approach, we developed an implementation with MATLAB, and we performed numerical experiments on several convex and non-convex linear-quadratic optimal control problems. The obtained simulation results show that our method is more accurate and more efficient than the method using the classical Euler discretization technique. Furthermore, it was shown that our method fastly converges to the optimal control of the continuous problem found analytically using the Pontryagin's maximum principle.
References:
[1] |
J. Awerjcewicz, Modeling, Simulation and Control of Non-Linear Engineering Dynamical Systems, State-of-the-Art, Presperctives and Applications, Springer, Heidelberg, Germany, 2008.
doi: 10.1007/978-3-319-08266-0. |
[2] |
M. Aliane, N. Moussouni and M. Bentobache,
Optimal control of a rectilinear motion of a rocket, Statistics, Optimization & Information Computing, 8 (2020), 281-295.
doi: 10.19139/soic-2310-5070-741. |
[3] |
M. Aliane, N. Moussouni and M. Bentobache, Non-linear optimal control of the heel angle of a rocket, The 6th International Conference on Control, Decision and Information Technologies, CODIT'19, Paris, France, (2019), 756–760.
doi: 10.19139/soic-2310-5070-741. |
[4] |
M. Bentobache, M. Telli and A. Mokhtari, A sequential linear programming algorithm for continuous and mixed-integer non-convex quadratic programming, Optimization of Complex Systems: Theory, Models, Algorithms and Applications, WCGO 2019, Advances in Intelligent Systems and Computing, Springer, Cham, 991 (2020), 26–36. |
[5] |
M. O. Bibi and M. Bentobache,
A hybrid direction algorithm for solving linear programs, International Journal of Computer Mathematics, 92 (2015), 201-216.
doi: 10.1080/00207160.2014.890188. |
[6] |
L. D. Duncan, Basic Considerations in the Development of an Unguided Rocket Trajectory Simulation Model, Technical report $N^0$ 5076, Atmospheric Sciences Laboratory, United States Army Electronics Command, 1966. |
[7] |
A. Chinchuluun, R. Enkhbat and P. M. Pardalos,
A novel approach for non-convex optimal control problems, Optimization, 58 (2009), 781-789.
doi: 10.1080/02331930902943962. |
[8] |
R. Gabasov, F. M. Kirillova and S. V. Prischepova, Optimal Feedback Control, Springer-Verlag, London, 1995. |
[9] |
G. R. Rose, Numerical Methods for Solving Optimal Control Problems, Master's Thesis, University of Tennessee, Knoxville, 2015. |
[10] |
P. Howlett,
The optimal control of a train, Annals of Operations Research, 98 (2000), 65-87.
doi: 10.1023/A:1019235819716. |
[11] |
N. Khimoum and M. O. Bibi,
Primal-dual method for solving a linear-quadratic multi-input optimal control problem, Optimization Letters, 14 (2019), 653-669.
doi: 10.1007/s11590-018-1375-2. |
[12] |
K. Louadj, P. Spiteri, F. Demim, M. Aidene, A. Nemra and F. Messine,
Application optimal control for a problem aircraft flight, Engineering Science and Technology Review, 11 (2018), 156-164.
|
[13] |
N. Moussouni and M. Aidene,
An algorithm for optimization of cereal output, Acta Applicandae Mathematicae, 11 (2011), 113-127.
doi: 10.1007/s10440-011-9664-0. |
[14] |
N. Moussouni and M. Aidene,
Optimization of cereal output in presence of locusts, An International Journal of Optimization and Control: Theories & Applications, 6 (2016), 1-10.
doi: 10.11121/ijocta.01.2016.00254. |
[15] |
O. Oukacha, Direct Method for the Optimization of Control Problems, PhD Dissertation, University of Tizi-Ouzou, Algeria, 2016 (in French). |
[16] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Intersciences Publisher, New York, 1962. |
[17] |
E. Trélat, Optimal Control: Theory and Applications, Vuibert, Paris, France, 2005 (in French). |
[18] |
J. Zhu and R. Zeng,
A mathematical formulation for optimal control of air pollution, Science in China, 46 (2003), 994-1002.
|
[19] |
M. A. Zaitri, M. O. Bibi and M. Bentobache,
A hybrid direction algorithm for solving optimal control problems, Cogent Mathematics & Statistics, 6 (2019), 1-12.
doi: 10.1080/25742558.2019.1612614. |
show all references
References:
[1] |
J. Awerjcewicz, Modeling, Simulation and Control of Non-Linear Engineering Dynamical Systems, State-of-the-Art, Presperctives and Applications, Springer, Heidelberg, Germany, 2008.
doi: 10.1007/978-3-319-08266-0. |
[2] |
M. Aliane, N. Moussouni and M. Bentobache,
Optimal control of a rectilinear motion of a rocket, Statistics, Optimization & Information Computing, 8 (2020), 281-295.
doi: 10.19139/soic-2310-5070-741. |
[3] |
M. Aliane, N. Moussouni and M. Bentobache, Non-linear optimal control of the heel angle of a rocket, The 6th International Conference on Control, Decision and Information Technologies, CODIT'19, Paris, France, (2019), 756–760.
doi: 10.19139/soic-2310-5070-741. |
[4] |
M. Bentobache, M. Telli and A. Mokhtari, A sequential linear programming algorithm for continuous and mixed-integer non-convex quadratic programming, Optimization of Complex Systems: Theory, Models, Algorithms and Applications, WCGO 2019, Advances in Intelligent Systems and Computing, Springer, Cham, 991 (2020), 26–36. |
[5] |
M. O. Bibi and M. Bentobache,
A hybrid direction algorithm for solving linear programs, International Journal of Computer Mathematics, 92 (2015), 201-216.
doi: 10.1080/00207160.2014.890188. |
[6] |
L. D. Duncan, Basic Considerations in the Development of an Unguided Rocket Trajectory Simulation Model, Technical report $N^0$ 5076, Atmospheric Sciences Laboratory, United States Army Electronics Command, 1966. |
[7] |
A. Chinchuluun, R. Enkhbat and P. M. Pardalos,
A novel approach for non-convex optimal control problems, Optimization, 58 (2009), 781-789.
doi: 10.1080/02331930902943962. |
[8] |
R. Gabasov, F. M. Kirillova and S. V. Prischepova, Optimal Feedback Control, Springer-Verlag, London, 1995. |
[9] |
G. R. Rose, Numerical Methods for Solving Optimal Control Problems, Master's Thesis, University of Tennessee, Knoxville, 2015. |
[10] |
P. Howlett,
The optimal control of a train, Annals of Operations Research, 98 (2000), 65-87.
doi: 10.1023/A:1019235819716. |
[11] |
N. Khimoum and M. O. Bibi,
Primal-dual method for solving a linear-quadratic multi-input optimal control problem, Optimization Letters, 14 (2019), 653-669.
doi: 10.1007/s11590-018-1375-2. |
[12] |
K. Louadj, P. Spiteri, F. Demim, M. Aidene, A. Nemra and F. Messine,
Application optimal control for a problem aircraft flight, Engineering Science and Technology Review, 11 (2018), 156-164.
|
[13] |
N. Moussouni and M. Aidene,
An algorithm for optimization of cereal output, Acta Applicandae Mathematicae, 11 (2011), 113-127.
doi: 10.1007/s10440-011-9664-0. |
[14] |
N. Moussouni and M. Aidene,
Optimization of cereal output in presence of locusts, An International Journal of Optimization and Control: Theories & Applications, 6 (2016), 1-10.
doi: 10.11121/ijocta.01.2016.00254. |
[15] |
O. Oukacha, Direct Method for the Optimization of Control Problems, PhD Dissertation, University of Tizi-Ouzou, Algeria, 2016 (in French). |
[16] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Intersciences Publisher, New York, 1962. |
[17] |
E. Trélat, Optimal Control: Theory and Applications, Vuibert, Paris, France, 2005 (in French). |
[18] |
J. Zhu and R. Zeng,
A mathematical formulation for optimal control of air pollution, Science in China, 46 (2003), 994-1002.
|
[19] |
M. A. Zaitri, M. O. Bibi and M. Bentobache,
A hybrid direction algorithm for solving optimal control problems, Cogent Mathematics & Statistics, 6 (2019), 1-12.
doi: 10.1080/25742558.2019.1612614. |





EDM(SQP) | EDM(ASM) | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | 0.953125 | 0.45 | 3.73E+00 | 0.953125 | 1.03 | 3.73E+00 | ||
10 | 2.588281 | 0.09 | 2.09E+00 | 2.588281 | 0.12 | 2.09E+00 | ||
30 | 3.865982 | 0.15 | 8.14E-01 | 3.865982 | 0.25 | 8.14E-01 | ||
50 | 4.176861 | 0.43 | 5.03E-01 | 4.176861 | 0.54 | 5.03E-01 | ||
70 | 4.316335 | 0.91 | 3.64E-01 | 4.316335 | 1.58 | 3.64E-01 | ||
100 | 4.422900 | 1.99 | 2.57E-01 | 4.422900 | 2.48 | 2.57E-01 | ||
200 | 4.549882 | 10.30 | 1.30E-01 | 4.549697 | 12.45 | 1.30E-01 | ||
400 | 4.614494 | 51.99 | 6.54E-02 | 4.614199 | 46.91 | 6.57E-02 | ||
600 | 4.636198 | 161.93 | 4.37E-02 | 4.635949 | 144.54 | 4.39E-02 | ||
800 | 4.647087 | 375.59 | 3.28E-02 | 4.646814 | 379.60 | 3.31E-02 | ||
1000 | 4.653632 | 696.03 | 2.63E-02 | 4.653362 | 865.84 | 2.65E-02 |
EDM(SQP) | EDM(ASM) | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | 0.953125 | 0.45 | 3.73E+00 | 0.953125 | 1.03 | 3.73E+00 | ||
10 | 2.588281 | 0.09 | 2.09E+00 | 2.588281 | 0.12 | 2.09E+00 | ||
30 | 3.865982 | 0.15 | 8.14E-01 | 3.865982 | 0.25 | 8.14E-01 | ||
50 | 4.176861 | 0.43 | 5.03E-01 | 4.176861 | 0.54 | 5.03E-01 | ||
70 | 4.316335 | 0.91 | 3.64E-01 | 4.316335 | 1.58 | 3.64E-01 | ||
100 | 4.422900 | 1.99 | 2.57E-01 | 4.422900 | 2.48 | 2.57E-01 | ||
200 | 4.549882 | 10.30 | 1.30E-01 | 4.549697 | 12.45 | 1.30E-01 | ||
400 | 4.614494 | 51.99 | 6.54E-02 | 4.614199 | 46.91 | 6.57E-02 | ||
600 | 4.636198 | 161.93 | 4.37E-02 | 4.635949 | 144.54 | 4.39E-02 | ||
800 | 4.647087 | 375.59 | 3.28E-02 | 4.646814 | 379.60 | 3.31E-02 | ||
1000 | 4.653632 | 696.03 | 2.63E-02 | 4.653362 | 865.84 | 2.65E-02 |
CDA1 | CDA2 | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | 4.494898 | 0.01 | 1.85E-01 | 4.494898 | 0.05 | 1.85E-01 | ||
10 | 4.658000 | 0.01 | 2.19E-02 | 4.658000 | 0.07 | 2.19E-02 | ||
30 | 4.674355 | 0.03 | 5.54E-03 | 4.674355 | 0.21 | 5.54E-03 | ||
50 | 4.677464 | 0.09 | 2.43E-03 | 4.677464 | 0.45 | 2.43E-03 | ||
70 | 4.678780 | 0.11 | 1.11E-03 | 4.678780 | 0.54 | 1.11E-03 | ||
100 | 4.679761 | 0.25 | 1.30E-04 | 4.679761 | 0.81 | 1.30E-04 | ||
200 | 4.679830 | 0.96 | 6.13E-05 | 4.679830 | 8.37 | 6.13E-05 | ||
400 | 4.679865 | 10.73 | 2.67E-05 | 4.679865 | 10.08 | 2.67E-05 | ||
600 | 4.679876 | 31.06 | 1.52E-05 | 4.679876 | 29.00 | 1.52E-05 | ||
800 | 4.679882 | 72.20 | 9.43E-06 | 4.679882 | 80.56 | 9.43E-06 | ||
1000 | 4.679886 | 160.93 | 5.97E-06 | 4.679886 | 178.74 | 5.97E-06 |
CDA1 | CDA2 | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | 4.494898 | 0.01 | 1.85E-01 | 4.494898 | 0.05 | 1.85E-01 | ||
10 | 4.658000 | 0.01 | 2.19E-02 | 4.658000 | 0.07 | 2.19E-02 | ||
30 | 4.674355 | 0.03 | 5.54E-03 | 4.674355 | 0.21 | 5.54E-03 | ||
50 | 4.677464 | 0.09 | 2.43E-03 | 4.677464 | 0.45 | 2.43E-03 | ||
70 | 4.678780 | 0.11 | 1.11E-03 | 4.678780 | 0.54 | 1.11E-03 | ||
100 | 4.679761 | 0.25 | 1.30E-04 | 4.679761 | 0.81 | 1.30E-04 | ||
200 | 4.679830 | 0.96 | 6.13E-05 | 4.679830 | 8.37 | 6.13E-05 | ||
400 | 4.679865 | 10.73 | 2.67E-05 | 4.679865 | 10.08 | 2.67E-05 | ||
600 | 4.679876 | 31.06 | 1.52E-05 | 4.679876 | 29.00 | 1.52E-05 | ||
800 | 4.679882 | 72.20 | 9.43E-06 | 4.679882 | 80.56 | 9.43E-06 | ||
1000 | 4.679886 | 160.93 | 5.97E-06 | 4.679886 | 178.74 | 5.97E-06 |
EDM(SQP) | EDM(ASM) | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | -807.000006 | 0.42 | 6.33E+02 | -807.000000 | 0.78 | 6.33E+02 | ||
10 | -6.020544 | 0.04 | 1.68E+02 | -6.021052 | 0.07 | 1.68E+02 | ||
30 | -180.145998 | 0.17 | 6.15E+00 | -180.145998 | 0.24 | 6.15E+00 | ||
50 | -187.685200 | 0.74 | 1.37E+01 | -187.685200 | 0.66 | 1.37E+01 | ||
70 | -187.041677 | 1.80 | 1.30E+01 | -187.041677 | 1.85 | 1.30E+01 | ||
100 | -184.758275 | 5.04 | 1.08E+01 | -184.758275 | 4.92 | 1.08E+01 | ||
200 | -180.485036 | 37.17 | 6.49E+00 | -180.485036 | 36.75 | 6.49E+00 | ||
400 | -177.524433 | 293.36 | 3.52E+00 | -177.523183 | 324.39 | 3.52E+00 | ||
600 | -176.412810 | 1075.55 | 2.41E+00 | -176.411448 | 1284.80 | 2.41E+00 | ||
800 | -175.833379 | 2692.90 | 1.83E+00 | -175.831972 | 3712.96 | 1.83E+00 | ||
1000 | -175.478114 | 5611.01 | 1.48E+00 | -175.477202 | 8598.05 | 1.48E+00 |
EDM(SQP) | EDM(ASM) | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | -807.000006 | 0.42 | 6.33E+02 | -807.000000 | 0.78 | 6.33E+02 | ||
10 | -6.020544 | 0.04 | 1.68E+02 | -6.021052 | 0.07 | 1.68E+02 | ||
30 | -180.145998 | 0.17 | 6.15E+00 | -180.145998 | 0.24 | 6.15E+00 | ||
50 | -187.685200 | 0.74 | 1.37E+01 | -187.685200 | 0.66 | 1.37E+01 | ||
70 | -187.041677 | 1.80 | 1.30E+01 | -187.041677 | 1.85 | 1.30E+01 | ||
100 | -184.758275 | 5.04 | 1.08E+01 | -184.758275 | 4.92 | 1.08E+01 | ||
200 | -180.485036 | 37.17 | 6.49E+00 | -180.485036 | 36.75 | 6.49E+00 | ||
400 | -177.524433 | 293.36 | 3.52E+00 | -177.523183 | 324.39 | 3.52E+00 | ||
600 | -176.412810 | 1075.55 | 2.41E+00 | -176.411448 | 1284.80 | 2.41E+00 | ||
800 | -175.833379 | 2692.90 | 1.83E+00 | -175.831972 | 3712.96 | 1.83E+00 | ||
1000 | -175.478114 | 5611.01 | 1.48E+00 | -175.477202 | 8598.05 | 1.48E+00 |
CDA1 | CDA2 | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | -174.000000 | 0.29 | 9.95E-13 | -174.000000 | 0.56 | 0.00E+00 | ||
10 | -161.832000 | 0.02 | 1.22E+01 | -161.832000 | 0.11 | 1.22E+01 | ||
30 | -172.676444 | 0.07 | 1.32E+00 | -172.676444 | 0.33 | 1.32E+00 | ||
50 | -173.524339 | 0.19 | 4.76E-01 | -173.524339 | 0.61 | 4.76E-01 | ||
70 | -173.757431 | 0.44 | 2.43E-01 | -173.757431 | 0.98 | 2.43E-01 | ||
100 | -174.000000 | 0.98 | 3.01E-12 | -174.000000 | 1.81 | 5.00E-12 | ||
200 | -174.000000 | 8.02 | 4.01E-12 | -174.000000 | 10.29 | 6.00E-12 | ||
400 | -174.000000 | 83.60 | 3.00E-11 | -174.000000 | 90.35 | 9.00E-11 | ||
600 | -174.000000 | 354.27 | 2.10E-11 | -174.000000 | 359.11 | 6.40E-11 | ||
800 | -174.000000 | 996.67 | 6.20E-11 | -174.000000 | 1045.79 | 1.56E-10 | ||
1000 | -174.000000 | 2354.52 | 3.01E-12 | -174.000000 | 2320.88 | 4.01E-12 |
CDA1 | CDA2 | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | -174.000000 | 0.29 | 9.95E-13 | -174.000000 | 0.56 | 0.00E+00 | ||
10 | -161.832000 | 0.02 | 1.22E+01 | -161.832000 | 0.11 | 1.22E+01 | ||
30 | -172.676444 | 0.07 | 1.32E+00 | -172.676444 | 0.33 | 1.32E+00 | ||
50 | -173.524339 | 0.19 | 4.76E-01 | -173.524339 | 0.61 | 4.76E-01 | ||
70 | -173.757431 | 0.44 | 2.43E-01 | -173.757431 | 0.98 | 2.43E-01 | ||
100 | -174.000000 | 0.98 | 3.01E-12 | -174.000000 | 1.81 | 5.00E-12 | ||
200 | -174.000000 | 8.02 | 4.01E-12 | -174.000000 | 10.29 | 6.00E-12 | ||
400 | -174.000000 | 83.60 | 3.00E-11 | -174.000000 | 90.35 | 9.00E-11 | ||
600 | -174.000000 | 354.27 | 2.10E-11 | -174.000000 | 359.11 | 6.40E-11 | ||
800 | -174.000000 | 996.67 | 6.20E-11 | -174.000000 | 1045.79 | 1.56E-10 | ||
1000 | -174.000000 | 2354.52 | 3.01E-12 | -174.000000 | 2320.88 | 4.01E-12 |
EDM(SQP) | EDM(ASM) | ||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | |
4 | 32.000000 | 0.45 | 4.20E+01 | 32.000000 | 0.85 | 4.20E+01 | |
10 | 53.422400 | 0.49 | 2.06E+01 | 53.422400 | 0.93 | 2.06E+01 | |
30 | 66.485116 | 0.54 | 7.51E+00 | 66.485116 | 1.02 | 7.51E+00 | |
50 | 69.407818 | 0.66 | 4.59E+00 | 69.407818 | 1.22 | 4.59E+00 | |
70 | 70.694043 | 0.88 | 3.31E+00 | 70.694043 | 1.51 | 3.31E+00 | |
100 | 71.672177 | 1.26 | 2.33E+00 | 71.672177 | 2.01 | 2.33E+00 | |
200 | 72.828072 | 2.84 | 1.17E+00 | 72.828072 | 4.14 | 1.17E+00 | |
400 | 73.412022 | 12.25 | 5.88E-01 | 73.412022 | 16.85 | 5.88E-01 | |
600 | 73.607566 | 42.80 | 3.92E-01 | 73.607566 | 56.17 | 3.92E-01 | |
800 | 73.705506 | 120.33 | 2.94E-01 | 73.705506 | 154.07 | 2.94E-01 | |
1000 | 73.764324 | 284.73 | 2.36E-01 | 73.764324 | 360.15 | 2.36E-01 |
EDM(SQP) | EDM(ASM) | ||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | |
4 | 32.000000 | 0.45 | 4.20E+01 | 32.000000 | 0.85 | 4.20E+01 | |
10 | 53.422400 | 0.49 | 2.06E+01 | 53.422400 | 0.93 | 2.06E+01 | |
30 | 66.485116 | 0.54 | 7.51E+00 | 66.485116 | 1.02 | 7.51E+00 | |
50 | 69.407818 | 0.66 | 4.59E+00 | 69.407818 | 1.22 | 4.59E+00 | |
70 | 70.694043 | 0.88 | 3.31E+00 | 70.694043 | 1.51 | 3.31E+00 | |
100 | 71.672177 | 1.26 | 2.33E+00 | 71.672177 | 2.01 | 2.33E+00 | |
200 | 72.828072 | 2.84 | 1.17E+00 | 72.828072 | 4.14 | 1.17E+00 | |
400 | 73.412022 | 12.25 | 5.88E-01 | 73.412022 | 16.85 | 5.88E-01 | |
600 | 73.607566 | 42.80 | 3.92E-01 | 73.607566 | 56.17 | 3.92E-01 | |
800 | 73.705506 | 120.33 | 2.94E-01 | 73.705506 | 154.07 | 2.94E-01 | |
1000 | 73.764324 | 284.73 | 2.36E-01 | 73.764324 | 360.15 | 2.36E-01 |
CDA1 | CDA2 | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | 74.000000 | 0.01 | 0.00E+00 | 74.000000 | 0.05 | 0.00E+00 | ||
10 | 74.000000 | 0.02 | 0.00E+00 | 74.000000 | 0.07 | 0.00E+00 | ||
30 | 74.000000 | 0.03 | 0.00E+00 | 74.000000 | 0.21 | 0.00E+00 | ||
50 | 74.000000 | 0.08 | 0.00E+00 | 74.000000 | 0.38 | 0.00E+00 | ||
70 | 74.000000 | 0.11 | 0.00E+00 | 74.000000 | 0.54 | 9.95E-14 | ||
100 | 74.000000 | 0.18 | 0.00E+00 | 74.000000 | 0.93 | 0.00E+00 | ||
200 | 74.000000 | 0.92 | 0.00E+00 | 74.000000 | 2.51 | 0.00E+00 | ||
400 | 74.000000 | 6.55 | 2.98E-13 | 74.000000 | 9.12 | 3.98E-13 | ||
600 | 74.000000 | 24.48 | 1.99E-13 | 74.000000 | 28.43 | 3.98E-13 | ||
800 | 74.000000 | 65.34 | 6.96E-13 | 74.000000 | 71.64 | 6.96E-13 | ||
1000 | 74.000000 | 144.16 | 0.00E+00 | 74.000000 | 152.09 | 0.00E+00 |
CDA1 | CDA2 | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | 74.000000 | 0.01 | 0.00E+00 | 74.000000 | 0.05 | 0.00E+00 | ||
10 | 74.000000 | 0.02 | 0.00E+00 | 74.000000 | 0.07 | 0.00E+00 | ||
30 | 74.000000 | 0.03 | 0.00E+00 | 74.000000 | 0.21 | 0.00E+00 | ||
50 | 74.000000 | 0.08 | 0.00E+00 | 74.000000 | 0.38 | 0.00E+00 | ||
70 | 74.000000 | 0.11 | 0.00E+00 | 74.000000 | 0.54 | 9.95E-14 | ||
100 | 74.000000 | 0.18 | 0.00E+00 | 74.000000 | 0.93 | 0.00E+00 | ||
200 | 74.000000 | 0.92 | 0.00E+00 | 74.000000 | 2.51 | 0.00E+00 | ||
400 | 74.000000 | 6.55 | 2.98E-13 | 74.000000 | 9.12 | 3.98E-13 | ||
600 | 74.000000 | 24.48 | 1.99E-13 | 74.000000 | 28.43 | 3.98E-13 | ||
800 | 74.000000 | 65.34 | 6.96E-13 | 74.000000 | 71.64 | 6.96E-13 | ||
1000 | 74.000000 | 144.16 | 0.00E+00 | 74.000000 | 152.09 | 0.00E+00 |
EDM(SQP) | EDM(ASM) | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | 0.171875 | 0.46 | 1.81E+00 | 0.171875 | 1.03 | 1.81E+00 | ||
10 | 0.922969 | 0.07 | 1.06E+00 | 0.922969 | 0.08 | 1.06E+00 | ||
30 | 1.560700 | 0.17 | 4.17E-01 | 1.560700 | 0.16 | 4.17E-01 | ||
50 | 1.719317 | 0.60 | 2.59E-01 | 1.719317 | 0.53 | 2.59E-01 | ||
70 | 1.790821 | 1.12 | 1.87E-01 | 1.790821 | 1.00 | 1.87E-01 | ||
100 | 1.845588 | 2.58 | 1.33E-01 | 1.844967 | 2.06 | 1.33E-01 | ||
200 | 1.910993 | 12.49 | 6.71E-02 | 1.910780 | 10.75 | 6.73E-02 | ||
400 | 1.944331 | 60.91 | 3.38E-02 | 1.944171 | 61.13 | 3.39E-02 | ||
600 | 1.955538 | 187.13 | 2.26E-02 | 1.955084 | 176.01 | 2.30E-02 | ||
800 | 1.961162 | 438.55 | 1.70E-02 | 1.960852 | 530.81 | 1.73E-02 | ||
1000 | 1.964543 | 820.38 | 1.36E-02 | 1.964187 | 1180.43 | 1.39E-02 |
EDM(SQP) | EDM(ASM) | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | 0.171875 | 0.46 | 1.81E+00 | 0.171875 | 1.03 | 1.81E+00 | ||
10 | 0.922969 | 0.07 | 1.06E+00 | 0.922969 | 0.08 | 1.06E+00 | ||
30 | 1.560700 | 0.17 | 4.17E-01 | 1.560700 | 0.16 | 4.17E-01 | ||
50 | 1.719317 | 0.60 | 2.59E-01 | 1.719317 | 0.53 | 2.59E-01 | ||
70 | 1.790821 | 1.12 | 1.87E-01 | 1.790821 | 1.00 | 1.87E-01 | ||
100 | 1.845588 | 2.58 | 1.33E-01 | 1.844967 | 2.06 | 1.33E-01 | ||
200 | 1.910993 | 12.49 | 6.71E-02 | 1.910780 | 10.75 | 6.73E-02 | ||
400 | 1.944331 | 60.91 | 3.38E-02 | 1.944171 | 61.13 | 3.39E-02 | ||
600 | 1.955538 | 187.13 | 2.26E-02 | 1.955084 | 176.01 | 2.30E-02 | ||
800 | 1.961162 | 438.55 | 1.70E-02 | 1.960852 | 530.81 | 1.73E-02 | ||
1000 | 1.964543 | 820.38 | 1.36E-02 | 1.964187 | 1180.43 | 1.39E-02 |
CDA1 | CDA2 | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | 1.882653 | 0.01 | 9.55E-02 | 1.882653 | 0.06 | 9.55E-02 | ||
10 | 1.966800 | 0.01 | 1.13E-02 | 1.966800 | 0.07 | 1.13E-02 | ||
30 | 1.975251 | 0.03 | 2.86E-03 | 1.975251 | 0.21 | 2.86E-03 | ||
50 | 1.976858 | 0.08 | 1.25E-03 | 1.976858 | 0.36 | 1.25E-03 | ||
70 | 1.977538 | 0.11 | 5.74E-04 | 1.977538 | 0.58 | 5.74E-04 | ||
100 | 1.978046 | 0.23 | 6.72E-05 | 1.978046 | 0.80 | 6.72E-05 | ||
200 | 1.978081 | 1.05 | 3.17E-05 | 1.978081 | 2.92 | 3.17E-05 | ||
400 | 1.978099 | 10.23 | 1.38E-05 | 1.978099 | 10.02 | 1.38E-05 | ||
600 | 1.978105 | 30.87 | 7.86E-06 | 1.978105 | 28.47 | 7.86E-06 | ||
800 | 1.978108 | 73.76 | 4.88E-06 | 1.978108 | 79.62 | 4.88E-06 | ||
1000 | 1.978110 | 157.80 | 3.09E-06 | 1.978110 | 177.02 | 3.09E-06 |
CDA1 | CDA2 | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | 1.882653 | 0.01 | 9.55E-02 | 1.882653 | 0.06 | 9.55E-02 | ||
10 | 1.966800 | 0.01 | 1.13E-02 | 1.966800 | 0.07 | 1.13E-02 | ||
30 | 1.975251 | 0.03 | 2.86E-03 | 1.975251 | 0.21 | 2.86E-03 | ||
50 | 1.976858 | 0.08 | 1.25E-03 | 1.976858 | 0.36 | 1.25E-03 | ||
70 | 1.977538 | 0.11 | 5.74E-04 | 1.977538 | 0.58 | 5.74E-04 | ||
100 | 1.978046 | 0.23 | 6.72E-05 | 1.978046 | 0.80 | 6.72E-05 | ||
200 | 1.978081 | 1.05 | 3.17E-05 | 1.978081 | 2.92 | 3.17E-05 | ||
400 | 1.978099 | 10.23 | 1.38E-05 | 1.978099 | 10.02 | 1.38E-05 | ||
600 | 1.978105 | 30.87 | 7.86E-06 | 1.978105 | 28.47 | 7.86E-06 | ||
800 | 1.978108 | 73.76 | 4.88E-06 | 1.978108 | 79.62 | 4.88E-06 | ||
1000 | 1.978110 | 157.80 | 3.09E-06 | 1.978110 | 177.02 | 3.09E-06 |
[1] |
Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial and Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789 |
[2] |
Shigeaki Koike, Hiroaki Morimoto, Shigeru Sakaguchi. A linear-quadratic control problem with discretionary stopping. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 261-277. doi: 10.3934/dcdsb.2007.8.261 |
[3] |
Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control and Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97 |
[4] |
Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764 |
[5] |
Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 495-512. doi: 10.3934/naco.2020040 |
[6] |
Russell Johnson, Carmen Núñez. Remarks on linear-quadratic dissipative control systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 889-914. doi: 10.3934/dcdsb.2015.20.889 |
[7] |
Hanxiao Wang, Jingrui Sun, Jiongmin Yong. Weak closed-loop solvability of stochastic linear-quadratic optimal control problems. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2785-2805. doi: 10.3934/dcds.2019117 |
[8] |
Georg Vossen, Stefan Volkwein. Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 465-485. doi: 10.3934/naco.2012.2.465 |
[9] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control and Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[10] |
Yadong Shu, Bo Li. Linear-quadratic optimal control for discrete-time stochastic descriptor systems. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1583-1602. doi: 10.3934/jimo.2021034 |
[11] |
Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial and Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016 |
[12] |
Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193 |
[13] |
Jiongmin Yong. A deterministic linear quadratic time-inconsistent optimal control problem. Mathematical Control and Related Fields, 2011, 1 (1) : 83-118. doi: 10.3934/mcrf.2011.1.83 |
[14] |
René Carmona, Kenza Hamidouche, Mathieu Laurière, Zongjun Tan. Linear-quadratic zero-sum mean-field type games: Optimality conditions and policy optimization. Journal of Dynamics and Games, 2021, 8 (4) : 403-443. doi: 10.3934/jdg.2021023 |
[15] |
Walter Alt, Robert Baier, Matthias Gerdts, Frank Lempio. Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 547-570. doi: 10.3934/naco.2012.2.547 |
[16] |
Tijana Levajković, Hermann Mena, Amjad Tuffaha. The stochastic linear quadratic optimal control problem in Hilbert spaces: A polynomial chaos approach. Evolution Equations and Control Theory, 2016, 5 (1) : 105-134. doi: 10.3934/eect.2016.5.105 |
[17] |
Arezu Zare, Mohammad Keyanpour, Maziar Salahi. On fractional quadratic optimization problem with two quadratic constraints. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 301-315. doi: 10.3934/naco.2020003 |
[18] |
Ying Hu, Shanjian Tang. Mixed deterministic and random optimal control of linear stochastic systems with quadratic costs. Probability, Uncertainty and Quantitative Risk, 2019, 4 (0) : 1-. doi: 10.1186/s41546-018-0035-x |
[19] |
Qi Lü, Tianxiao Wang, Xu Zhang. Characterization of optimal feedback for stochastic linear quadratic control problems. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 11-. doi: 10.1186/s41546-017-0022-7 |
[20] |
Rolf Rannacher. A short course on numerical simulation of viscous flow: Discretization, optimization and stability analysis. Discrete and Continuous Dynamical Systems - S, 2012, 5 (6) : 1147-1194. doi: 10.3934/dcdss.2012.5.1147 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]