
-
Previous Article
Solving differential Riccati equations: A nonlinear space-time method using tensor trains
- NACO Home
- This Issue
-
Next Article
A primal-dual interior point method for $ P_{\ast }\left( \kappa \right) $-HLCP based on a class of parametric kernel functions
Direct method to solve linear-quadratic optimal control problems
1. | Laboratory of Pure and Applied Mathematics, University of Laghouat, Bp 37G, Ghardaia road, 03000, Laghouat, Algeria |
2. | Laboratory L2CSP, University of Tizi-Ouzou, 15000, Tizi-Ouzou, Algeria |
3. | IRIT-ENSEEIHT, Université Fédérale Toulouse-Midi-Pyrénées, France |
In this work, we have proposed a new approach for solving the linear-quadratic optimal control problem, where the quality criterion is a quadratic function, which can be convex or non-convex. In this approach, we transform the continuous optimal control problem into a quadratic optimization problem using the Cauchy discretization technique, then we solve it with the active-set method. In order to study the efficiency and the accuracy of the proposed approach, we developed an implementation with MATLAB, and we performed numerical experiments on several convex and non-convex linear-quadratic optimal control problems. The obtained simulation results show that our method is more accurate and more efficient than the method using the classical Euler discretization technique. Furthermore, it was shown that our method fastly converges to the optimal control of the continuous problem found analytically using the Pontryagin's maximum principle.
References:
[1] |
J. Awerjcewicz, Modeling, Simulation and Control of Non-Linear Engineering Dynamical Systems, State-of-the-Art, Presperctives and Applications, Springer, Heidelberg, Germany, 2008.
doi: 10.1007/978-3-319-08266-0. |
[2] |
M. Aliane, N. Moussouni and M. Bentobache,
Optimal control of a rectilinear motion of a rocket, Statistics, Optimization & Information Computing, 8 (2020), 281-295.
doi: 10.19139/soic-2310-5070-741. |
[3] |
M. Aliane, N. Moussouni and M. Bentobache, Non-linear optimal control of the heel angle of a rocket, The 6th International Conference on Control, Decision and Information Technologies, CODIT'19, Paris, France, (2019), 756–760.
doi: 10.19139/soic-2310-5070-741. |
[4] |
M. Bentobache, M. Telli and A. Mokhtari, A sequential linear programming algorithm for continuous and mixed-integer non-convex quadratic programming, Optimization of Complex Systems: Theory, Models, Algorithms and Applications, WCGO 2019, Advances in Intelligent Systems and Computing, Springer, Cham, 991 (2020), 26–36. Google Scholar |
[5] |
M. O. Bibi and M. Bentobache,
A hybrid direction algorithm for solving linear programs, International Journal of Computer Mathematics, 92 (2015), 201-216.
doi: 10.1080/00207160.2014.890188. |
[6] |
L. D. Duncan, Basic Considerations in the Development of an Unguided Rocket Trajectory Simulation Model, Technical report $N^0$ 5076, Atmospheric Sciences Laboratory, United States Army Electronics Command, 1966. Google Scholar |
[7] |
A. Chinchuluun, R. Enkhbat and P. M. Pardalos,
A novel approach for non-convex optimal control problems, Optimization, 58 (2009), 781-789.
doi: 10.1080/02331930902943962. |
[8] |
R. Gabasov, F. M. Kirillova and S. V. Prischepova, Optimal Feedback Control, Springer-Verlag, London, 1995. |
[9] |
G. R. Rose, Numerical Methods for Solving Optimal Control Problems, Master's Thesis, University of Tennessee, Knoxville, 2015. Google Scholar |
[10] |
P. Howlett,
The optimal control of a train, Annals of Operations Research, 98 (2000), 65-87.
doi: 10.1023/A:1019235819716. |
[11] |
N. Khimoum and M. O. Bibi,
Primal-dual method for solving a linear-quadratic multi-input optimal control problem, Optimization Letters, 14 (2019), 653-669.
doi: 10.1007/s11590-018-1375-2. |
[12] |
K. Louadj, P. Spiteri, F. Demim, M. Aidene, A. Nemra and F. Messine, Application optimal control for a problem aircraft flight, Engineering Science and Technology Review, 11 (2018), 156-164. Google Scholar |
[13] |
N. Moussouni and M. Aidene,
An algorithm for optimization of cereal output, Acta Applicandae Mathematicae, 11 (2011), 113-127.
doi: 10.1007/s10440-011-9664-0. |
[14] |
N. Moussouni and M. Aidene,
Optimization of cereal output in presence of locusts, An International Journal of Optimization and Control: Theories & Applications, 6 (2016), 1-10.
doi: 10.11121/ijocta.01.2016.00254. |
[15] |
O. Oukacha, Direct Method for the Optimization of Control Problems, PhD Dissertation, University of Tizi-Ouzou, Algeria, 2016 (in French). Google Scholar |
[16] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Intersciences Publisher, New York, 1962. |
[17] |
E. Trélat, Optimal Control: Theory and Applications, Vuibert, Paris, France, 2005 (in French). |
[18] |
J. Zhu and R. Zeng, A mathematical formulation for optimal control of air pollution, Science in China, 46 (2003), 994-1002. Google Scholar |
[19] |
M. A. Zaitri, M. O. Bibi and M. Bentobache,
A hybrid direction algorithm for solving optimal control problems, Cogent Mathematics & Statistics, 6 (2019), 1-12.
doi: 10.1080/25742558.2019.1612614. |
show all references
References:
[1] |
J. Awerjcewicz, Modeling, Simulation and Control of Non-Linear Engineering Dynamical Systems, State-of-the-Art, Presperctives and Applications, Springer, Heidelberg, Germany, 2008.
doi: 10.1007/978-3-319-08266-0. |
[2] |
M. Aliane, N. Moussouni and M. Bentobache,
Optimal control of a rectilinear motion of a rocket, Statistics, Optimization & Information Computing, 8 (2020), 281-295.
doi: 10.19139/soic-2310-5070-741. |
[3] |
M. Aliane, N. Moussouni and M. Bentobache, Non-linear optimal control of the heel angle of a rocket, The 6th International Conference on Control, Decision and Information Technologies, CODIT'19, Paris, France, (2019), 756–760.
doi: 10.19139/soic-2310-5070-741. |
[4] |
M. Bentobache, M. Telli and A. Mokhtari, A sequential linear programming algorithm for continuous and mixed-integer non-convex quadratic programming, Optimization of Complex Systems: Theory, Models, Algorithms and Applications, WCGO 2019, Advances in Intelligent Systems and Computing, Springer, Cham, 991 (2020), 26–36. Google Scholar |
[5] |
M. O. Bibi and M. Bentobache,
A hybrid direction algorithm for solving linear programs, International Journal of Computer Mathematics, 92 (2015), 201-216.
doi: 10.1080/00207160.2014.890188. |
[6] |
L. D. Duncan, Basic Considerations in the Development of an Unguided Rocket Trajectory Simulation Model, Technical report $N^0$ 5076, Atmospheric Sciences Laboratory, United States Army Electronics Command, 1966. Google Scholar |
[7] |
A. Chinchuluun, R. Enkhbat and P. M. Pardalos,
A novel approach for non-convex optimal control problems, Optimization, 58 (2009), 781-789.
doi: 10.1080/02331930902943962. |
[8] |
R. Gabasov, F. M. Kirillova and S. V. Prischepova, Optimal Feedback Control, Springer-Verlag, London, 1995. |
[9] |
G. R. Rose, Numerical Methods for Solving Optimal Control Problems, Master's Thesis, University of Tennessee, Knoxville, 2015. Google Scholar |
[10] |
P. Howlett,
The optimal control of a train, Annals of Operations Research, 98 (2000), 65-87.
doi: 10.1023/A:1019235819716. |
[11] |
N. Khimoum and M. O. Bibi,
Primal-dual method for solving a linear-quadratic multi-input optimal control problem, Optimization Letters, 14 (2019), 653-669.
doi: 10.1007/s11590-018-1375-2. |
[12] |
K. Louadj, P. Spiteri, F. Demim, M. Aidene, A. Nemra and F. Messine, Application optimal control for a problem aircraft flight, Engineering Science and Technology Review, 11 (2018), 156-164. Google Scholar |
[13] |
N. Moussouni and M. Aidene,
An algorithm for optimization of cereal output, Acta Applicandae Mathematicae, 11 (2011), 113-127.
doi: 10.1007/s10440-011-9664-0. |
[14] |
N. Moussouni and M. Aidene,
Optimization of cereal output in presence of locusts, An International Journal of Optimization and Control: Theories & Applications, 6 (2016), 1-10.
doi: 10.11121/ijocta.01.2016.00254. |
[15] |
O. Oukacha, Direct Method for the Optimization of Control Problems, PhD Dissertation, University of Tizi-Ouzou, Algeria, 2016 (in French). Google Scholar |
[16] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Intersciences Publisher, New York, 1962. |
[17] |
E. Trélat, Optimal Control: Theory and Applications, Vuibert, Paris, France, 2005 (in French). |
[18] |
J. Zhu and R. Zeng, A mathematical formulation for optimal control of air pollution, Science in China, 46 (2003), 994-1002. Google Scholar |
[19] |
M. A. Zaitri, M. O. Bibi and M. Bentobache,
A hybrid direction algorithm for solving optimal control problems, Cogent Mathematics & Statistics, 6 (2019), 1-12.
doi: 10.1080/25742558.2019.1612614. |





EDM(SQP) | EDM(ASM) | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | 0.953125 | 0.45 | 3.73E+00 | 0.953125 | 1.03 | 3.73E+00 | ||
10 | 2.588281 | 0.09 | 2.09E+00 | 2.588281 | 0.12 | 2.09E+00 | ||
30 | 3.865982 | 0.15 | 8.14E-01 | 3.865982 | 0.25 | 8.14E-01 | ||
50 | 4.176861 | 0.43 | 5.03E-01 | 4.176861 | 0.54 | 5.03E-01 | ||
70 | 4.316335 | 0.91 | 3.64E-01 | 4.316335 | 1.58 | 3.64E-01 | ||
100 | 4.422900 | 1.99 | 2.57E-01 | 4.422900 | 2.48 | 2.57E-01 | ||
200 | 4.549882 | 10.30 | 1.30E-01 | 4.549697 | 12.45 | 1.30E-01 | ||
400 | 4.614494 | 51.99 | 6.54E-02 | 4.614199 | 46.91 | 6.57E-02 | ||
600 | 4.636198 | 161.93 | 4.37E-02 | 4.635949 | 144.54 | 4.39E-02 | ||
800 | 4.647087 | 375.59 | 3.28E-02 | 4.646814 | 379.60 | 3.31E-02 | ||
1000 | 4.653632 | 696.03 | 2.63E-02 | 4.653362 | 865.84 | 2.65E-02 |
EDM(SQP) | EDM(ASM) | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | 0.953125 | 0.45 | 3.73E+00 | 0.953125 | 1.03 | 3.73E+00 | ||
10 | 2.588281 | 0.09 | 2.09E+00 | 2.588281 | 0.12 | 2.09E+00 | ||
30 | 3.865982 | 0.15 | 8.14E-01 | 3.865982 | 0.25 | 8.14E-01 | ||
50 | 4.176861 | 0.43 | 5.03E-01 | 4.176861 | 0.54 | 5.03E-01 | ||
70 | 4.316335 | 0.91 | 3.64E-01 | 4.316335 | 1.58 | 3.64E-01 | ||
100 | 4.422900 | 1.99 | 2.57E-01 | 4.422900 | 2.48 | 2.57E-01 | ||
200 | 4.549882 | 10.30 | 1.30E-01 | 4.549697 | 12.45 | 1.30E-01 | ||
400 | 4.614494 | 51.99 | 6.54E-02 | 4.614199 | 46.91 | 6.57E-02 | ||
600 | 4.636198 | 161.93 | 4.37E-02 | 4.635949 | 144.54 | 4.39E-02 | ||
800 | 4.647087 | 375.59 | 3.28E-02 | 4.646814 | 379.60 | 3.31E-02 | ||
1000 | 4.653632 | 696.03 | 2.63E-02 | 4.653362 | 865.84 | 2.65E-02 |
CDA1 | CDA2 | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | 4.494898 | 0.01 | 1.85E-01 | 4.494898 | 0.05 | 1.85E-01 | ||
10 | 4.658000 | 0.01 | 2.19E-02 | 4.658000 | 0.07 | 2.19E-02 | ||
30 | 4.674355 | 0.03 | 5.54E-03 | 4.674355 | 0.21 | 5.54E-03 | ||
50 | 4.677464 | 0.09 | 2.43E-03 | 4.677464 | 0.45 | 2.43E-03 | ||
70 | 4.678780 | 0.11 | 1.11E-03 | 4.678780 | 0.54 | 1.11E-03 | ||
100 | 4.679761 | 0.25 | 1.30E-04 | 4.679761 | 0.81 | 1.30E-04 | ||
200 | 4.679830 | 0.96 | 6.13E-05 | 4.679830 | 8.37 | 6.13E-05 | ||
400 | 4.679865 | 10.73 | 2.67E-05 | 4.679865 | 10.08 | 2.67E-05 | ||
600 | 4.679876 | 31.06 | 1.52E-05 | 4.679876 | 29.00 | 1.52E-05 | ||
800 | 4.679882 | 72.20 | 9.43E-06 | 4.679882 | 80.56 | 9.43E-06 | ||
1000 | 4.679886 | 160.93 | 5.97E-06 | 4.679886 | 178.74 | 5.97E-06 |
CDA1 | CDA2 | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | 4.494898 | 0.01 | 1.85E-01 | 4.494898 | 0.05 | 1.85E-01 | ||
10 | 4.658000 | 0.01 | 2.19E-02 | 4.658000 | 0.07 | 2.19E-02 | ||
30 | 4.674355 | 0.03 | 5.54E-03 | 4.674355 | 0.21 | 5.54E-03 | ||
50 | 4.677464 | 0.09 | 2.43E-03 | 4.677464 | 0.45 | 2.43E-03 | ||
70 | 4.678780 | 0.11 | 1.11E-03 | 4.678780 | 0.54 | 1.11E-03 | ||
100 | 4.679761 | 0.25 | 1.30E-04 | 4.679761 | 0.81 | 1.30E-04 | ||
200 | 4.679830 | 0.96 | 6.13E-05 | 4.679830 | 8.37 | 6.13E-05 | ||
400 | 4.679865 | 10.73 | 2.67E-05 | 4.679865 | 10.08 | 2.67E-05 | ||
600 | 4.679876 | 31.06 | 1.52E-05 | 4.679876 | 29.00 | 1.52E-05 | ||
800 | 4.679882 | 72.20 | 9.43E-06 | 4.679882 | 80.56 | 9.43E-06 | ||
1000 | 4.679886 | 160.93 | 5.97E-06 | 4.679886 | 178.74 | 5.97E-06 |
EDM(SQP) | EDM(ASM) | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | -807.000006 | 0.42 | 6.33E+02 | -807.000000 | 0.78 | 6.33E+02 | ||
10 | -6.020544 | 0.04 | 1.68E+02 | -6.021052 | 0.07 | 1.68E+02 | ||
30 | -180.145998 | 0.17 | 6.15E+00 | -180.145998 | 0.24 | 6.15E+00 | ||
50 | -187.685200 | 0.74 | 1.37E+01 | -187.685200 | 0.66 | 1.37E+01 | ||
70 | -187.041677 | 1.80 | 1.30E+01 | -187.041677 | 1.85 | 1.30E+01 | ||
100 | -184.758275 | 5.04 | 1.08E+01 | -184.758275 | 4.92 | 1.08E+01 | ||
200 | -180.485036 | 37.17 | 6.49E+00 | -180.485036 | 36.75 | 6.49E+00 | ||
400 | -177.524433 | 293.36 | 3.52E+00 | -177.523183 | 324.39 | 3.52E+00 | ||
600 | -176.412810 | 1075.55 | 2.41E+00 | -176.411448 | 1284.80 | 2.41E+00 | ||
800 | -175.833379 | 2692.90 | 1.83E+00 | -175.831972 | 3712.96 | 1.83E+00 | ||
1000 | -175.478114 | 5611.01 | 1.48E+00 | -175.477202 | 8598.05 | 1.48E+00 |
EDM(SQP) | EDM(ASM) | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | -807.000006 | 0.42 | 6.33E+02 | -807.000000 | 0.78 | 6.33E+02 | ||
10 | -6.020544 | 0.04 | 1.68E+02 | -6.021052 | 0.07 | 1.68E+02 | ||
30 | -180.145998 | 0.17 | 6.15E+00 | -180.145998 | 0.24 | 6.15E+00 | ||
50 | -187.685200 | 0.74 | 1.37E+01 | -187.685200 | 0.66 | 1.37E+01 | ||
70 | -187.041677 | 1.80 | 1.30E+01 | -187.041677 | 1.85 | 1.30E+01 | ||
100 | -184.758275 | 5.04 | 1.08E+01 | -184.758275 | 4.92 | 1.08E+01 | ||
200 | -180.485036 | 37.17 | 6.49E+00 | -180.485036 | 36.75 | 6.49E+00 | ||
400 | -177.524433 | 293.36 | 3.52E+00 | -177.523183 | 324.39 | 3.52E+00 | ||
600 | -176.412810 | 1075.55 | 2.41E+00 | -176.411448 | 1284.80 | 2.41E+00 | ||
800 | -175.833379 | 2692.90 | 1.83E+00 | -175.831972 | 3712.96 | 1.83E+00 | ||
1000 | -175.478114 | 5611.01 | 1.48E+00 | -175.477202 | 8598.05 | 1.48E+00 |
CDA1 | CDA2 | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | -174.000000 | 0.29 | 9.95E-13 | -174.000000 | 0.56 | 0.00E+00 | ||
10 | -161.832000 | 0.02 | 1.22E+01 | -161.832000 | 0.11 | 1.22E+01 | ||
30 | -172.676444 | 0.07 | 1.32E+00 | -172.676444 | 0.33 | 1.32E+00 | ||
50 | -173.524339 | 0.19 | 4.76E-01 | -173.524339 | 0.61 | 4.76E-01 | ||
70 | -173.757431 | 0.44 | 2.43E-01 | -173.757431 | 0.98 | 2.43E-01 | ||
100 | -174.000000 | 0.98 | 3.01E-12 | -174.000000 | 1.81 | 5.00E-12 | ||
200 | -174.000000 | 8.02 | 4.01E-12 | -174.000000 | 10.29 | 6.00E-12 | ||
400 | -174.000000 | 83.60 | 3.00E-11 | -174.000000 | 90.35 | 9.00E-11 | ||
600 | -174.000000 | 354.27 | 2.10E-11 | -174.000000 | 359.11 | 6.40E-11 | ||
800 | -174.000000 | 996.67 | 6.20E-11 | -174.000000 | 1045.79 | 1.56E-10 | ||
1000 | -174.000000 | 2354.52 | 3.01E-12 | -174.000000 | 2320.88 | 4.01E-12 |
CDA1 | CDA2 | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | -174.000000 | 0.29 | 9.95E-13 | -174.000000 | 0.56 | 0.00E+00 | ||
10 | -161.832000 | 0.02 | 1.22E+01 | -161.832000 | 0.11 | 1.22E+01 | ||
30 | -172.676444 | 0.07 | 1.32E+00 | -172.676444 | 0.33 | 1.32E+00 | ||
50 | -173.524339 | 0.19 | 4.76E-01 | -173.524339 | 0.61 | 4.76E-01 | ||
70 | -173.757431 | 0.44 | 2.43E-01 | -173.757431 | 0.98 | 2.43E-01 | ||
100 | -174.000000 | 0.98 | 3.01E-12 | -174.000000 | 1.81 | 5.00E-12 | ||
200 | -174.000000 | 8.02 | 4.01E-12 | -174.000000 | 10.29 | 6.00E-12 | ||
400 | -174.000000 | 83.60 | 3.00E-11 | -174.000000 | 90.35 | 9.00E-11 | ||
600 | -174.000000 | 354.27 | 2.10E-11 | -174.000000 | 359.11 | 6.40E-11 | ||
800 | -174.000000 | 996.67 | 6.20E-11 | -174.000000 | 1045.79 | 1.56E-10 | ||
1000 | -174.000000 | 2354.52 | 3.01E-12 | -174.000000 | 2320.88 | 4.01E-12 |
EDM(SQP) | EDM(ASM) | ||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | |
4 | 32.000000 | 0.45 | 4.20E+01 | 32.000000 | 0.85 | 4.20E+01 | |
10 | 53.422400 | 0.49 | 2.06E+01 | 53.422400 | 0.93 | 2.06E+01 | |
30 | 66.485116 | 0.54 | 7.51E+00 | 66.485116 | 1.02 | 7.51E+00 | |
50 | 69.407818 | 0.66 | 4.59E+00 | 69.407818 | 1.22 | 4.59E+00 | |
70 | 70.694043 | 0.88 | 3.31E+00 | 70.694043 | 1.51 | 3.31E+00 | |
100 | 71.672177 | 1.26 | 2.33E+00 | 71.672177 | 2.01 | 2.33E+00 | |
200 | 72.828072 | 2.84 | 1.17E+00 | 72.828072 | 4.14 | 1.17E+00 | |
400 | 73.412022 | 12.25 | 5.88E-01 | 73.412022 | 16.85 | 5.88E-01 | |
600 | 73.607566 | 42.80 | 3.92E-01 | 73.607566 | 56.17 | 3.92E-01 | |
800 | 73.705506 | 120.33 | 2.94E-01 | 73.705506 | 154.07 | 2.94E-01 | |
1000 | 73.764324 | 284.73 | 2.36E-01 | 73.764324 | 360.15 | 2.36E-01 |
EDM(SQP) | EDM(ASM) | ||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | |
4 | 32.000000 | 0.45 | 4.20E+01 | 32.000000 | 0.85 | 4.20E+01 | |
10 | 53.422400 | 0.49 | 2.06E+01 | 53.422400 | 0.93 | 2.06E+01 | |
30 | 66.485116 | 0.54 | 7.51E+00 | 66.485116 | 1.02 | 7.51E+00 | |
50 | 69.407818 | 0.66 | 4.59E+00 | 69.407818 | 1.22 | 4.59E+00 | |
70 | 70.694043 | 0.88 | 3.31E+00 | 70.694043 | 1.51 | 3.31E+00 | |
100 | 71.672177 | 1.26 | 2.33E+00 | 71.672177 | 2.01 | 2.33E+00 | |
200 | 72.828072 | 2.84 | 1.17E+00 | 72.828072 | 4.14 | 1.17E+00 | |
400 | 73.412022 | 12.25 | 5.88E-01 | 73.412022 | 16.85 | 5.88E-01 | |
600 | 73.607566 | 42.80 | 3.92E-01 | 73.607566 | 56.17 | 3.92E-01 | |
800 | 73.705506 | 120.33 | 2.94E-01 | 73.705506 | 154.07 | 2.94E-01 | |
1000 | 73.764324 | 284.73 | 2.36E-01 | 73.764324 | 360.15 | 2.36E-01 |
CDA1 | CDA2 | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | 74.000000 | 0.01 | 0.00E+00 | 74.000000 | 0.05 | 0.00E+00 | ||
10 | 74.000000 | 0.02 | 0.00E+00 | 74.000000 | 0.07 | 0.00E+00 | ||
30 | 74.000000 | 0.03 | 0.00E+00 | 74.000000 | 0.21 | 0.00E+00 | ||
50 | 74.000000 | 0.08 | 0.00E+00 | 74.000000 | 0.38 | 0.00E+00 | ||
70 | 74.000000 | 0.11 | 0.00E+00 | 74.000000 | 0.54 | 9.95E-14 | ||
100 | 74.000000 | 0.18 | 0.00E+00 | 74.000000 | 0.93 | 0.00E+00 | ||
200 | 74.000000 | 0.92 | 0.00E+00 | 74.000000 | 2.51 | 0.00E+00 | ||
400 | 74.000000 | 6.55 | 2.98E-13 | 74.000000 | 9.12 | 3.98E-13 | ||
600 | 74.000000 | 24.48 | 1.99E-13 | 74.000000 | 28.43 | 3.98E-13 | ||
800 | 74.000000 | 65.34 | 6.96E-13 | 74.000000 | 71.64 | 6.96E-13 | ||
1000 | 74.000000 | 144.16 | 0.00E+00 | 74.000000 | 152.09 | 0.00E+00 |
CDA1 | CDA2 | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | 74.000000 | 0.01 | 0.00E+00 | 74.000000 | 0.05 | 0.00E+00 | ||
10 | 74.000000 | 0.02 | 0.00E+00 | 74.000000 | 0.07 | 0.00E+00 | ||
30 | 74.000000 | 0.03 | 0.00E+00 | 74.000000 | 0.21 | 0.00E+00 | ||
50 | 74.000000 | 0.08 | 0.00E+00 | 74.000000 | 0.38 | 0.00E+00 | ||
70 | 74.000000 | 0.11 | 0.00E+00 | 74.000000 | 0.54 | 9.95E-14 | ||
100 | 74.000000 | 0.18 | 0.00E+00 | 74.000000 | 0.93 | 0.00E+00 | ||
200 | 74.000000 | 0.92 | 0.00E+00 | 74.000000 | 2.51 | 0.00E+00 | ||
400 | 74.000000 | 6.55 | 2.98E-13 | 74.000000 | 9.12 | 3.98E-13 | ||
600 | 74.000000 | 24.48 | 1.99E-13 | 74.000000 | 28.43 | 3.98E-13 | ||
800 | 74.000000 | 65.34 | 6.96E-13 | 74.000000 | 71.64 | 6.96E-13 | ||
1000 | 74.000000 | 144.16 | 0.00E+00 | 74.000000 | 152.09 | 0.00E+00 |
EDM(SQP) | EDM(ASM) | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | 0.171875 | 0.46 | 1.81E+00 | 0.171875 | 1.03 | 1.81E+00 | ||
10 | 0.922969 | 0.07 | 1.06E+00 | 0.922969 | 0.08 | 1.06E+00 | ||
30 | 1.560700 | 0.17 | 4.17E-01 | 1.560700 | 0.16 | 4.17E-01 | ||
50 | 1.719317 | 0.60 | 2.59E-01 | 1.719317 | 0.53 | 2.59E-01 | ||
70 | 1.790821 | 1.12 | 1.87E-01 | 1.790821 | 1.00 | 1.87E-01 | ||
100 | 1.845588 | 2.58 | 1.33E-01 | 1.844967 | 2.06 | 1.33E-01 | ||
200 | 1.910993 | 12.49 | 6.71E-02 | 1.910780 | 10.75 | 6.73E-02 | ||
400 | 1.944331 | 60.91 | 3.38E-02 | 1.944171 | 61.13 | 3.39E-02 | ||
600 | 1.955538 | 187.13 | 2.26E-02 | 1.955084 | 176.01 | 2.30E-02 | ||
800 | 1.961162 | 438.55 | 1.70E-02 | 1.960852 | 530.81 | 1.73E-02 | ||
1000 | 1.964543 | 820.38 | 1.36E-02 | 1.964187 | 1180.43 | 1.39E-02 |
EDM(SQP) | EDM(ASM) | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | 0.171875 | 0.46 | 1.81E+00 | 0.171875 | 1.03 | 1.81E+00 | ||
10 | 0.922969 | 0.07 | 1.06E+00 | 0.922969 | 0.08 | 1.06E+00 | ||
30 | 1.560700 | 0.17 | 4.17E-01 | 1.560700 | 0.16 | 4.17E-01 | ||
50 | 1.719317 | 0.60 | 2.59E-01 | 1.719317 | 0.53 | 2.59E-01 | ||
70 | 1.790821 | 1.12 | 1.87E-01 | 1.790821 | 1.00 | 1.87E-01 | ||
100 | 1.845588 | 2.58 | 1.33E-01 | 1.844967 | 2.06 | 1.33E-01 | ||
200 | 1.910993 | 12.49 | 6.71E-02 | 1.910780 | 10.75 | 6.73E-02 | ||
400 | 1.944331 | 60.91 | 3.38E-02 | 1.944171 | 61.13 | 3.39E-02 | ||
600 | 1.955538 | 187.13 | 2.26E-02 | 1.955084 | 176.01 | 2.30E-02 | ||
800 | 1.961162 | 438.55 | 1.70E-02 | 1.960852 | 530.81 | 1.73E-02 | ||
1000 | 1.964543 | 820.38 | 1.36E-02 | 1.964187 | 1180.43 | 1.39E-02 |
CDA1 | CDA2 | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | 1.882653 | 0.01 | 9.55E-02 | 1.882653 | 0.06 | 9.55E-02 | ||
10 | 1.966800 | 0.01 | 1.13E-02 | 1.966800 | 0.07 | 1.13E-02 | ||
30 | 1.975251 | 0.03 | 2.86E-03 | 1.975251 | 0.21 | 2.86E-03 | ||
50 | 1.976858 | 0.08 | 1.25E-03 | 1.976858 | 0.36 | 1.25E-03 | ||
70 | 1.977538 | 0.11 | 5.74E-04 | 1.977538 | 0.58 | 5.74E-04 | ||
100 | 1.978046 | 0.23 | 6.72E-05 | 1.978046 | 0.80 | 6.72E-05 | ||
200 | 1.978081 | 1.05 | 3.17E-05 | 1.978081 | 2.92 | 3.17E-05 | ||
400 | 1.978099 | 10.23 | 1.38E-05 | 1.978099 | 10.02 | 1.38E-05 | ||
600 | 1.978105 | 30.87 | 7.86E-06 | 1.978105 | 28.47 | 7.86E-06 | ||
800 | 1.978108 | 73.76 | 4.88E-06 | 1.978108 | 79.62 | 4.88E-06 | ||
1000 | 1.978110 | 157.80 | 3.09E-06 | 1.978110 | 177.02 | 3.09E-06 |
CDA1 | CDA2 | |||||||
N | J(u) | CPU | Error | J(u) | CPU | Error | ||
4 | 1.882653 | 0.01 | 9.55E-02 | 1.882653 | 0.06 | 9.55E-02 | ||
10 | 1.966800 | 0.01 | 1.13E-02 | 1.966800 | 0.07 | 1.13E-02 | ||
30 | 1.975251 | 0.03 | 2.86E-03 | 1.975251 | 0.21 | 2.86E-03 | ||
50 | 1.976858 | 0.08 | 1.25E-03 | 1.976858 | 0.36 | 1.25E-03 | ||
70 | 1.977538 | 0.11 | 5.74E-04 | 1.977538 | 0.58 | 5.74E-04 | ||
100 | 1.978046 | 0.23 | 6.72E-05 | 1.978046 | 0.80 | 6.72E-05 | ||
200 | 1.978081 | 1.05 | 3.17E-05 | 1.978081 | 2.92 | 3.17E-05 | ||
400 | 1.978099 | 10.23 | 1.38E-05 | 1.978099 | 10.02 | 1.38E-05 | ||
600 | 1.978105 | 30.87 | 7.86E-06 | 1.978105 | 28.47 | 7.86E-06 | ||
800 | 1.978108 | 73.76 | 4.88E-06 | 1.978108 | 79.62 | 4.88E-06 | ||
1000 | 1.978110 | 157.80 | 3.09E-06 | 1.978110 | 177.02 | 3.09E-06 |
[1] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[2] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205 |
[3] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[4] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[5] |
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 |
[6] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[7] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[8] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[9] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[10] |
Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263 |
[11] |
Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405 |
[12] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[13] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021040 |
[14] |
John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026 |
[15] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[16] |
Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021037 |
[17] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[18] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[19] |
Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021018 |
[20] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]