# American Institute of Mathematical Sciences

doi: 10.3934/naco.2021005
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

## Optimal control of a dynamical system with intermediate phase constraints and applications in cash management

 1 Department of Mathematics and Computer Science, University of Mila, 043000 Mila, Algeria, Research Unit LaMOS, University of Bejaia 2 Research Unit LaMOS, Department of Operational Research, University of Bejaia, 06000 Bejaia, Algeria

Received  May 2020 Revised  January 2021 Early access February 2021

The aim of this work is to apply the results of R. Gabasov et al. [4,14] to an extended class of optimal control problems in the Bolza form, with intermediate phase constraints and multivariate control. In this paper, the developed iterative numerical method avoids the discretization of the dynamical system. Indeed, by using a piecewise constant control, the problem is reduced for each iteration to a linear programming problem, this auxiliary task allows to improve the value of the quality criterion. The process is repeated until the optimal or the suboptimal control is obtained. As an application, we use this method to solve an extension of the deterministic optimal cash management model of S.P. Sethi [31,32]. In this extension, we assume that the bank overdrafts and short selling of stock are allowed, but within the authorized time limit. The results of the numerical example show that the optimal decision for the firm depends closely on the intermediate moment, the optimal decision for the firm is to purchase until a certain date the stocks at their authorized maximum value in order to take advantage of the returns derived from stock. After that, it sales the stocks at their authorized maximum value in order to satisfy the constraint at the intermediate moment.

Citation: Mourad Azi, Mohand Ouamer Bibi. Optimal control of a dynamical system with intermediate phase constraints and applications in cash management. Numerical Algebra, Control & Optimization, doi: 10.3934/naco.2021005
##### References:

show all references

##### References:
Optimal control $u_1^*(t)$
Optimal control $u_2^*(t)$
 [1] Piermarco Cannarsa, Hélène Frankowska, Elsa M. Marchini. On Bolza optimal control problems with constraints. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 629-653. doi: 10.3934/dcdsb.2009.11.629 [2] Leszek Gasiński. Optimal control problem of Bolza-type for evolution hemivariational inequality. Conference Publications, 2003, 2003 (Special) : 320-326. doi: 10.3934/proc.2003.2003.320 [3] Zhengyan Wang, Guanghua Xu, Peibiao Zhao, Zudi Lu. The optimal cash holding models for stochastic cash management of continuous time. Journal of Industrial & Management Optimization, 2018, 14 (1) : 1-17. doi: 10.3934/jimo.2017034 [4] Andrei V. Dmitruk, Alexander M. Kaganovich. Quadratic order conditions for an extended weak minimum in optimal control problems with intermediate and mixed constraints. Discrete & Continuous Dynamical Systems, 2011, 29 (2) : 523-545. doi: 10.3934/dcds.2011.29.523 [5] Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967 [6] Maria do Rosário de Pinho, Ilya Shvartsman. Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete & Continuous Dynamical Systems, 2011, 29 (2) : 505-522. doi: 10.3934/dcds.2011.29.505 [7] Georg Vossen, Torsten Hermanns. On an optimal control problem in laser cutting with mixed finite-/infinite-dimensional constraints. Journal of Industrial & Management Optimization, 2014, 10 (2) : 503-519. doi: 10.3934/jimo.2014.10.503 [8] Jan-Hendrik Webert, Philip E. Gill, Sven-Joachim Kimmerle, Matthias Gerdts. A study of structure-exploiting SQP algorithms for an optimal control problem with coupled hyperbolic and ordinary differential equation constraints. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1259-1282. doi: 10.3934/dcdss.2018071 [9] Alexander Tyatyushkin, Tatiana Zarodnyuk. Numerical method for solving optimal control problems with phase constraints. Numerical Algebra, Control & Optimization, 2017, 7 (4) : 481-492. doi: 10.3934/naco.2017030 [10] Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006 [11] Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. An optimal control problem in HIV treatment. Conference Publications, 2013, 2013 (special) : 311-322. doi: 10.3934/proc.2013.2013.311 [12] Andrea Bacchiocchi, Germana Giombini. An optimal control problem of monetary policy. Discrete & Continuous Dynamical Systems - B, 2021, 26 (11) : 5769-5786. doi: 10.3934/dcdsb.2021224 [13] Anna Maria Candela, J.L. Flores, M. Sánchez. A quadratic Bolza-type problem in a non-complete Riemannian manifold. Conference Publications, 2003, 2003 (Special) : 173-181. doi: 10.3934/proc.2003.2003.173 [14] V.N. Malozemov, A.V. Omelchenko. On a discrete optimal control problem with an explicit solution. Journal of Industrial & Management Optimization, 2006, 2 (1) : 55-62. doi: 10.3934/jimo.2006.2.55 [15] Urszula Ledzewicz, Heinz Schättler. Drug resistance in cancer chemotherapy as an optimal control problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 129-150. doi: 10.3934/dcdsb.2006.6.129 [16] Lijuan Wang, Qishu Yan. Optimal control problem for exact synchronization of parabolic system. Mathematical Control & Related Fields, 2019, 9 (3) : 411-424. doi: 10.3934/mcrf.2019019 [17] Akram Kheirabadi, Asadollah Mahmoudzadeh Vaziri, Sohrab Effati. Solving optimal control problem using Hermite wavelet. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 101-112. doi: 10.3934/naco.2019008 [18] Renzhao Chen, Xuezhang Hou. An optimal osmotic control problem for a concrete dam system. Communications on Pure & Applied Analysis, 2021, 20 (6) : 2341-2359. doi: 10.3934/cpaa.2021082 [19] M. Teresa T. Monteiro, Isabel Espírito Santo, Helena Sofia Rodrigues. An optimal control problem applied to a wastewater treatment plant. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021153 [20] Andrew J. Whittle, Suzanne Lenhart, Louis J. Gross. Optimal control for management of an invasive plant species. Mathematical Biosciences & Engineering, 2007, 4 (1) : 101-112. doi: 10.3934/mbe.2007.4.101

Impact Factor: