• PDF
• Cite
• Share
Article Contents  Article Contents

# Convergence of interval AOR method for linear interval equations

• * Corresponding author: Manideepa Saha
• A real interval vector/matrix is an array whose entries are real intervals. In this paper, we consider the real linear interval equations $\bf{Ax} = \bf{b}$ with ${{\bf{A}} }$, $\bf{b}$ respectively, denote an interval matrix and an interval vector. The aim of the paper is to study the numerical solution of the linear interval equations for various classes of coefficient interval matrices. In particular, we study the convergence of interval AOR method when the coefficient interval matrix is either interval strictly diagonally dominant matrices, interval $L$-matrices, interval $M$-matrices, or interval $H$-matrices.

Mathematics Subject Classification: Primary: 15A30, 65G40, 65H10; Secondary: 65G30.

 Citation: • • Figure 1.1.  Solution set of linear interval equation

Figure 4.1.  Solution set $\sum(\textbf{A},b).$

Figure 4.2.  Solution set $\sum(\textbf{A},b).$

• ## Article Metrics  DownLoad:  Full-Size Img  PowerPoint