doi: 10.3934/naco.2021009
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China

* Corresponding author: gezqjd@mail.xjtu.edu.cn

Received  October 2020 Revised  February 2021 Early access March 2021

Fund Project: The author is supported by National Natural Science Foundation of China grant Nos. 11926402 and 61973338

This paper discusses exact (approximate) controllability and exact (approximate) observability of stochastic implicit systems in Banach spaces. Firstly, we introduce the stochastic GE-evolution operator in Banach space and discuss existence and uniqueness of the mild solution to stochastic implicit systems by stochastic GE-evolution operator in Banach space. Secondly, we discuss conditions for exact (approximate) controllability and exact (approximate) observability of the systems considered in terms of stochastic GE-evolution operator and the dual principle. Finally, an illustrative example is given.

Citation: Zhaoqiang Ge. Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator. Numerical Algebra, Control & Optimization, doi: 10.3934/naco.2021009
References:
[1]

S. Bonaccori, Stochastic variation of constants formular for infinite dimensional equation, Stochastic Analysis and Applications, 17 (1999), 509-528.  doi: 10.1080/07362999908809616.  Google Scholar

[2]

R. Curtain and H. J. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory, 2$^{nd}$ edition, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4224-6.  Google Scholar

[3]

L. Dai, Filting and LQG problems for discrete-time stochastic singular systems, IEEE Transactions on Automatic Control, 34 (1989), 1105-1108.  doi: 10.1109/9.35288.  Google Scholar

[4]

Z. W. Gao and X. Y. Shi, Observer-based controller design for stochastic descriptor systems with Brownian motions, Automatica, 49 (2013), 2229-2235.  doi: 10.1016/j.automatica.2013.04.001.  Google Scholar

[5]

B. Gashi and A. A. Pantelous, Linear backward stochastic differential equations of descriptor type: Regular systems, Stochastic Analysis and Application, 31 (2013), 142-166.  doi: 10.1080/07362994.2013.741400.  Google Scholar

[6]

B. Gashi and A. A. Pantelous, Linear stochastic systems of descriptor type: theory and applications, safety, reliability, risk and life-cycle performance of structure and infrastructures, in: Proceedings of the 11th international conference on structure safety and reliability, ICOSSAR 2013, (2013), 1047–1054. Google Scholar

[7]

B. Gashi and A. A. Pantelous, Linear backward stochastic differential systems of descriptor type with structure and applications to engineering, Probabilitic Engineering Mechanics, 40 (2015), 1-11.  doi: 10.1080/07362994.2013.741400.  Google Scholar

[8]

Z. Q. GeG. T. Zhu and D. X. Feng, Exact controllability for singular distributed parameter systems in Hilbert spaces, Sci. China Inf. Sci., 52 (2009), 2045-2052.  doi: 10.1007/s11432-009-0204-8.  Google Scholar

[9]

Z. Q. GeG. T. Zhu and D. X. Feng, Generalized operator semigroup and well-posedness of singular distributed parameter systems, Sci. Sin. Math., 40 (2010), 477-495.   Google Scholar

[10]

Z. Q. Ge, and D. X. Feng, Well-posed problem of nonlinear singular distributed parameter systems and nonlinear GE-semigroups, Sci. China Inf. Sci., 56 (2013), 128201: 1–128201: 14. doi: 10.1007/s11432-013-4852-3.  Google Scholar

[11]

Z. Q. Ge and X. C. Ge, An exact controllability of stochastic singular systems, Sci. China Inf. Sci., 64 (2021), 179202: 1–179202: 3. doi: 10.1007/s11432-019-9902-y.  Google Scholar

[12]

Z. Q. Ge, Impulse controllability and impulse observability of stochastic singular systems, J. Syst. Sci. Complex, 2020. doi: 10.1007/s11424-020-9250-5.  Google Scholar

[13] S. G. HuC. M. Huang and F. K. Wu, Stochastic Differential Equation, Science Press, Beijing, 2008.   Google Scholar
[14]

K. F. KongY. C. Ma and D. Y. Liu, Observer-based quantized sliding mode dissipative control for singular semi-Markovian jump systems, Applied Mathematics and Computation, 362 (2019), 1-18.  doi: 10.1016/j.amc.2019.06.053.  Google Scholar

[15]

K. L. Kuttler and J. Li, Generalized stochastic evolution equations, J. Differential Equations, 257 (2014), 816-842.  doi: 10.1016/j.jde.2014.04.017.  Google Scholar

[16]

K. B. LiaskosA. A. Pantelous and I. G. Stratis, Linear stochastic degenerate Sobolev equation and application, International Journal of Control, 88 (2015), 2538-2553.  doi: 10.1080/00207179.2015.1048482.  Google Scholar

[17]

K. B. LiaskosA. A. Pantelous and I. G. Stratis, Stochastic degenerate Sobolev equation: well posedness and exact controllability, Math. Meth. App. Sci., 41 (2018), 1025-1032.  doi: 10.1002/mma.4077.  Google Scholar

[18]

X. Mao, Stochastic Differential Equation and Their Applications, Horwood Publishing, England, 1998.  Google Scholar

[19]

I. V. MelnikovaA. I. Filikov and U. A. Anufrieva, Abstract stochastic equations. I. classical and distributional solutions, J. Math. Sciences, Functional Analysis, 111 (2002), 3430-3475.  doi: 10.1023/A:1016006127598.  Google Scholar

[20]

I. V. Melnikova and A. I. Filikov, Abstract Cauchy Problem, Chapnan and Hall/CRC, London, 2001. doi: 10.1201/9781420035490.  Google Scholar

[21]

B. Oksendal, Stochastic Differential Equation: An Introduction with Application, Springer-Verlag, New York, 1998. doi: 10.1007/978-3-662-03620-4.  Google Scholar

[22] G. D. Prato and J. Zabczyk, Stochastic Equation in Infinite Dimensions, 2$^{nd}$ edition, Cambridge University Press, London, 2014.  doi: 10.1017/CBO9781107295513.  Google Scholar
[23]

L. A. Vlasenko and A. G. Rutkas, Stochastic impulse control of parabolic systems of Sobolev type, Differential Equations, 47 (2011), 1498-1507.  doi: 10.1134/S0012266111100132.  Google Scholar

[24]

S. Y. Xing and Q. L. Zhang, Stability and exact observability of discrete stochastic singular systems based on generalized Lyapunov equations, IET Control Theory and Applications, 10 (2016), 971-980.  doi: 10.1049/iet-cta.2015.0896.  Google Scholar

[25]

P. Yu and Y. C. Ma, Observer-based asynchronous control for Markov jump systems, Applied Mathematics and Computation, 377 (2020), 1-14.  doi: 10.1016/j.amc.2020.125184.  Google Scholar

[26]

Q. L. Zhang, L. Li and X. G. Yan, etc, Sliding mode control for singular stochastic Markovian jump systems with uncertainties, Automatica, 79 (2017), 27-34. doi: 10.1016/j.automatica.2017.01.002.  Google Scholar

[27]

G. M. ZhangQ. MaB. Y. ZhangS. Y. Xu and J. W. Xia, Admissibility and stabilization of stochastic singular Markovian jump systems with time delays, Systems and Control Letters, 114 (2018), 1-10.  doi: 10.1016/j.sysconle.2018.02.004.  Google Scholar

[28]

W. H. ZhangY. Zhao and L. Sheng, Some remarks on stability of stochastic singular systems with state-dependent noise, Automatica, 51 (2015), 273-277.  doi: 10.1016/j.automatica.2014.10.044.  Google Scholar

[29]

W. Y. ZhaoY. C. MaA. H. ChenL. Fu and Y. T. Zhang, Robust sliding mode control for Markovian jump singular systems with randomly changing structure, Applied Mathematics and Computation, 349 (2019), 81-96.  doi: 10.1016/j.amc.2018.12.014.  Google Scholar

[30]

Y. Zhao and W. H. Zhang, New results on stability of singular stochastic Markov jump systems with state-dependent noise, Int. J. Robust Nonlinear Control, 26 (2016), 2169-2186.  doi: 10.1002/rnc.3401.  Google Scholar

show all references

References:
[1]

S. Bonaccori, Stochastic variation of constants formular for infinite dimensional equation, Stochastic Analysis and Applications, 17 (1999), 509-528.  doi: 10.1080/07362999908809616.  Google Scholar

[2]

R. Curtain and H. J. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory, 2$^{nd}$ edition, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4224-6.  Google Scholar

[3]

L. Dai, Filting and LQG problems for discrete-time stochastic singular systems, IEEE Transactions on Automatic Control, 34 (1989), 1105-1108.  doi: 10.1109/9.35288.  Google Scholar

[4]

Z. W. Gao and X. Y. Shi, Observer-based controller design for stochastic descriptor systems with Brownian motions, Automatica, 49 (2013), 2229-2235.  doi: 10.1016/j.automatica.2013.04.001.  Google Scholar

[5]

B. Gashi and A. A. Pantelous, Linear backward stochastic differential equations of descriptor type: Regular systems, Stochastic Analysis and Application, 31 (2013), 142-166.  doi: 10.1080/07362994.2013.741400.  Google Scholar

[6]

B. Gashi and A. A. Pantelous, Linear stochastic systems of descriptor type: theory and applications, safety, reliability, risk and life-cycle performance of structure and infrastructures, in: Proceedings of the 11th international conference on structure safety and reliability, ICOSSAR 2013, (2013), 1047–1054. Google Scholar

[7]

B. Gashi and A. A. Pantelous, Linear backward stochastic differential systems of descriptor type with structure and applications to engineering, Probabilitic Engineering Mechanics, 40 (2015), 1-11.  doi: 10.1080/07362994.2013.741400.  Google Scholar

[8]

Z. Q. GeG. T. Zhu and D. X. Feng, Exact controllability for singular distributed parameter systems in Hilbert spaces, Sci. China Inf. Sci., 52 (2009), 2045-2052.  doi: 10.1007/s11432-009-0204-8.  Google Scholar

[9]

Z. Q. GeG. T. Zhu and D. X. Feng, Generalized operator semigroup and well-posedness of singular distributed parameter systems, Sci. Sin. Math., 40 (2010), 477-495.   Google Scholar

[10]

Z. Q. Ge, and D. X. Feng, Well-posed problem of nonlinear singular distributed parameter systems and nonlinear GE-semigroups, Sci. China Inf. Sci., 56 (2013), 128201: 1–128201: 14. doi: 10.1007/s11432-013-4852-3.  Google Scholar

[11]

Z. Q. Ge and X. C. Ge, An exact controllability of stochastic singular systems, Sci. China Inf. Sci., 64 (2021), 179202: 1–179202: 3. doi: 10.1007/s11432-019-9902-y.  Google Scholar

[12]

Z. Q. Ge, Impulse controllability and impulse observability of stochastic singular systems, J. Syst. Sci. Complex, 2020. doi: 10.1007/s11424-020-9250-5.  Google Scholar

[13] S. G. HuC. M. Huang and F. K. Wu, Stochastic Differential Equation, Science Press, Beijing, 2008.   Google Scholar
[14]

K. F. KongY. C. Ma and D. Y. Liu, Observer-based quantized sliding mode dissipative control for singular semi-Markovian jump systems, Applied Mathematics and Computation, 362 (2019), 1-18.  doi: 10.1016/j.amc.2019.06.053.  Google Scholar

[15]

K. L. Kuttler and J. Li, Generalized stochastic evolution equations, J. Differential Equations, 257 (2014), 816-842.  doi: 10.1016/j.jde.2014.04.017.  Google Scholar

[16]

K. B. LiaskosA. A. Pantelous and I. G. Stratis, Linear stochastic degenerate Sobolev equation and application, International Journal of Control, 88 (2015), 2538-2553.  doi: 10.1080/00207179.2015.1048482.  Google Scholar

[17]

K. B. LiaskosA. A. Pantelous and I. G. Stratis, Stochastic degenerate Sobolev equation: well posedness and exact controllability, Math. Meth. App. Sci., 41 (2018), 1025-1032.  doi: 10.1002/mma.4077.  Google Scholar

[18]

X. Mao, Stochastic Differential Equation and Their Applications, Horwood Publishing, England, 1998.  Google Scholar

[19]

I. V. MelnikovaA. I. Filikov and U. A. Anufrieva, Abstract stochastic equations. I. classical and distributional solutions, J. Math. Sciences, Functional Analysis, 111 (2002), 3430-3475.  doi: 10.1023/A:1016006127598.  Google Scholar

[20]

I. V. Melnikova and A. I. Filikov, Abstract Cauchy Problem, Chapnan and Hall/CRC, London, 2001. doi: 10.1201/9781420035490.  Google Scholar

[21]

B. Oksendal, Stochastic Differential Equation: An Introduction with Application, Springer-Verlag, New York, 1998. doi: 10.1007/978-3-662-03620-4.  Google Scholar

[22] G. D. Prato and J. Zabczyk, Stochastic Equation in Infinite Dimensions, 2$^{nd}$ edition, Cambridge University Press, London, 2014.  doi: 10.1017/CBO9781107295513.  Google Scholar
[23]

L. A. Vlasenko and A. G. Rutkas, Stochastic impulse control of parabolic systems of Sobolev type, Differential Equations, 47 (2011), 1498-1507.  doi: 10.1134/S0012266111100132.  Google Scholar

[24]

S. Y. Xing and Q. L. Zhang, Stability and exact observability of discrete stochastic singular systems based on generalized Lyapunov equations, IET Control Theory and Applications, 10 (2016), 971-980.  doi: 10.1049/iet-cta.2015.0896.  Google Scholar

[25]

P. Yu and Y. C. Ma, Observer-based asynchronous control for Markov jump systems, Applied Mathematics and Computation, 377 (2020), 1-14.  doi: 10.1016/j.amc.2020.125184.  Google Scholar

[26]

Q. L. Zhang, L. Li and X. G. Yan, etc, Sliding mode control for singular stochastic Markovian jump systems with uncertainties, Automatica, 79 (2017), 27-34. doi: 10.1016/j.automatica.2017.01.002.  Google Scholar

[27]

G. M. ZhangQ. MaB. Y. ZhangS. Y. Xu and J. W. Xia, Admissibility and stabilization of stochastic singular Markovian jump systems with time delays, Systems and Control Letters, 114 (2018), 1-10.  doi: 10.1016/j.sysconle.2018.02.004.  Google Scholar

[28]

W. H. ZhangY. Zhao and L. Sheng, Some remarks on stability of stochastic singular systems with state-dependent noise, Automatica, 51 (2015), 273-277.  doi: 10.1016/j.automatica.2014.10.044.  Google Scholar

[29]

W. Y. ZhaoY. C. MaA. H. ChenL. Fu and Y. T. Zhang, Robust sliding mode control for Markovian jump singular systems with randomly changing structure, Applied Mathematics and Computation, 349 (2019), 81-96.  doi: 10.1016/j.amc.2018.12.014.  Google Scholar

[30]

Y. Zhao and W. H. Zhang, New results on stability of singular stochastic Markov jump systems with state-dependent noise, Int. J. Robust Nonlinear Control, 26 (2016), 2169-2186.  doi: 10.1002/rnc.3401.  Google Scholar

[1]

Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037

[2]

Zdzisław Brzeźniak, Paul André Razafimandimby. Irreducibility and strong Feller property for stochastic evolution equations in Banach spaces. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1051-1077. doi: 10.3934/dcdsb.2016.21.1051

[3]

Pengyu Chen, Xuping Zhang. Approximate controllability of nonlocal problem for non-autonomous stochastic evolution equations. Evolution Equations & Control Theory, 2021, 10 (3) : 471-489. doi: 10.3934/eect.2020076

[4]

Viorel Barbu, Gabriela Marinoschi. An identification problem for a linear evolution equation in a banach space. Discrete & Continuous Dynamical Systems - S, 2020, 13 (5) : 1429-1440. doi: 10.3934/dcdss.2020081

[5]

Tôn Việt Tạ. Non-autonomous stochastic evolution equations in Banach spaces of martingale type 2: Strict solutions and maximal regularity. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4507-4542. doi: 10.3934/dcds.2017193

[6]

Tôn Việt Tạ. Strict solutions to stochastic semilinear evolution equations in M-type 2 Banach spaces. Communications on Pure & Applied Analysis, 2021, 20 (5) : 1867-1891. doi: 10.3934/cpaa.2021050

[7]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[8]

K. Ravikumar, Manil T. Mohan, A. Anguraj. Approximate controllability of a non-autonomous evolution equation in Banach spaces. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 461-485. doi: 10.3934/naco.2020038

[9]

Qiang Du, Manlin Li. On the stochastic immersed boundary method with an implicit interface formulation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 373-389. doi: 10.3934/dcdsb.2011.15.373

[10]

Alfredo Lorenzi, Ioan I. Vrabie. An identification problem for a linear evolution equation in a Banach space and applications. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 671-691. doi: 10.3934/dcdss.2011.4.671

[11]

Thuy N. T. Nguyen. Uniform controllability of semidiscrete approximations for parabolic systems in Banach spaces. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 613-640. doi: 10.3934/dcdsb.2015.20.613

[12]

Daoyi Xu, Weisong Zhou. Existence-uniqueness and exponential estimate of pathwise solutions of retarded stochastic evolution systems with time smooth diffusion coefficients. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 2161-2180. doi: 10.3934/dcds.2017093

[13]

Tatsien Li, Bopeng Rao, Zhiqiang Wang. Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discrete & Continuous Dynamical Systems, 2010, 28 (1) : 243-257. doi: 10.3934/dcds.2010.28.243

[14]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[15]

Tomás Caraballo, Leonid Shaikhet. Stability of delay evolution equations with stochastic perturbations. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2095-2113. doi: 10.3934/cpaa.2014.13.2095

[16]

Anna Karczewska, Carlos Lizama. On stochastic fractional Volterra equations in Hilbert space. Conference Publications, 2007, 2007 (Special) : 541-550. doi: 10.3934/proc.2007.2007.541

[17]

Darko Volkov, Joan Calafell Sandiumenge. A stochastic approach to reconstruction of faults in elastic half space. Inverse Problems & Imaging, 2019, 13 (3) : 479-511. doi: 10.3934/ipi.2019024

[18]

Daliang Zhao, Yansheng Liu, Xiaodi Li. Controllability for a class of semilinear fractional evolution systems via resolvent operators. Communications on Pure & Applied Analysis, 2019, 18 (1) : 455-478. doi: 10.3934/cpaa.2019023

[19]

Jinrong Wang, Michal Fečkan, Yong Zhou. Approximate controllability of Sobolev type fractional evolution systems with nonlocal conditions. Evolution Equations & Control Theory, 2017, 6 (3) : 471-486. doi: 10.3934/eect.2017024

[20]

Xuan-Xuan Xi, Mimi Hou, Xian-Feng Zhou, Yanhua Wen. Approximate controllability of fractional neutral evolution systems of hyperbolic type. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021035

 Impact Factor: 

Metrics

  • PDF downloads (101)
  • HTML views (217)
  • Cited by (0)

Other articles
by authors

[Back to Top]