• Previous Article
    Long-step path-following algorithm for quantum information theory: Some numerical aspects and applications
  • NACO Home
  • This Issue
  • Next Article
    Caputo fractional derivative operational matrices of Legendre and Chebyshev wavelets in fractional delay optimal control
June  2022, 12(2): 427-443. doi: 10.3934/naco.2021014

$ V $-$ E $-invexity in $ E $-differentiable multiobjective programming

Department of Mathematics, Hadhramout University, P.O. BOX : (50511-50512), Al-Mahrah, Yemen, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland

Received  June 2020 Revised  January 2021 Published  June 2022 Early access  April 2021

In this paper, a new concept of generalized convexity is introduced for not necessarily differentiable vector optimization problems with $ E $-differentiable functions. Namely, for an $ E $-differentiable vector-valued function, the concept of $ V $-$ E $-invexity is defined as a generalization of the $ E $-differentiable $ E $-invexity notion and the concept of $ V $-invexity. Further, the sufficiency of the so-called $ E $-Karush-Kuhn-Tucker optimality conditions are established for the considered $ E $-differentiable vector optimization problems with both inequality and equality constraints under $ V $-$ E $-invexity hypotheses. Furthermore, the so-called vector $ E $-dual problem in the sense of Mond-Weir is defined for the considered $ E $-differentiable multiobjective programming problem and several $ E $-duality theorems are derived also under appropriate $ V $-$ E $-invexity assumptions.

Citation: Najeeb Abdulaleem. $ V $-$ E $-invexity in $ E $-differentiable multiobjective programming. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 427-443. doi: 10.3934/naco.2021014
References:
[1]

N. Abdulaleem, $E$-invexity and generalized $E$-invexity in $E$-differentiable multiobjective programming, inITM Web of Conferences, EDP Sciences, 24 (2019), 01002. doi: 10.1051/itmconf/20192401002.

[2]

N. Abdulaleem, $E$-optimality conditions for $E$-differentiable $E$-invex multiobjective programming problems, WSEAS Transactions on Mathematics, 18 (2019), 14-27. 

[3]

N. Abdulaleem, $E$-duality results for $E$-differentiable $E$-invex multiobjective programming problems, in Journal of Physics: Conference Series, IOP Publishing, 1294 (2019), 032027. doi: 10.1088/1742-6596/1294/3/032027.

[4]

B. Aghezzaf, M. Hachimi, Generalized invexity and duality in multiobjective programming problems, Journal of Global Optimization, (2000), 91-101. doi: 10.1023/A:1008321026317.

[5]

I. AhmadS. K. Gupta and A. Jayswal, On sufficiency and duality for nonsmooth multiobjective programming problems involving generalized $V$-$r$-invex functions, Nonlinear Analysis: Theory, Methods & Applications, 74 (2011), 5920-5928.  doi: 10.1016/j.na.2011.05.058.

[6]

T. Antczak and N. Abdulaleem, Optimality and duality results for $E$-differentiable multiobjective fractional programming problems under $E$-convexity, Journal of Inequalities and Applications, 2019 (2019), Article number: 292. doi: 10.1186/s13660-019-2237-x.

[7]

T. Antczak and N. Abdulaleem, Optimality conditions for $E$-differentiable vector optimization problems with the multiple interval-valued objective function, Journal of Industrial & Management Optimization, 16 (2020), 2971-2989.  doi: 10.3934/jimo.2019089.

[8]

T. Antczak and N. Abdulaleem, $E$-optimality conditions and Wolfe $E$-duality for $E$-differentiable vector optimization problems with inequality and equality constraints, Journal of Nonlinear Sciences and Applications, 12 (2019), 745-764.  doi: 10.22436/jnsa.012.11.06.

[9]

T. Antczak, $r$-preinvexity and $r$-invexity in mathematical programming, Computer and Mathematics with Applications, (2005), 551-566. doi: 10.1016/j.camwa.2005.01.024.

[10]

T. Antczak, The notion of $V$-$r$-invexity in differentiable multiobjective programming, Journal of Applied Analysis, (2005), 63-79. doi: 10.1515/JAA.2005.63.

[11]

T. Antczak, A class of $B-(p, r)$-invex functions and mathematical programming, Journal of Mathematical Analysis and Applications, 286 (2003), 187-206.  doi: 10.1016/S0022-247X(03)00469-4.

[12]

T. Antczak, Optimality and duality for nonsmooth multiobjective programming problems with $V$-$r$-invexity, Journal of Global Optimization, 45 (2009), 319-334.  doi: 10.1007/s10898-008-9377-8.

[13]

A. Ben-Israel and B. Mond, What is invexity?, Journal of the Australian Mathematical Society, 28 (1986), 1-9. doi: 10.1017/S0334270000005142.

[14]

B. D. Craven and B. M. Glover, Invex functions and duality, Journal of the Australian Mathematical Society, 39 (1985), 1-20.  doi: 10.1017/S1446788700022126.

[15]

M. A. Hanson and B. Mond, Further generalizations of convexity in mathematical programming, Journal of Information and Optimization Sciences, 3 (1982), 25-32.  doi: 10.1080/02522667.1982.10698716.

[16]

M. A. Hanson and B. Mond, Necessary and sufficient conditions in constrained optimization, Mathematical Programming, 37 (1987), 51-58.  doi: 10.1007/BF02591683.

[17]

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, Journal of Mathematical Analysis and Applications, 80 (1981), 545-550.  doi: 10.1016/0022-247X(81)90123-2.

[18]

V. Jeyakumar and B. Mond, On generalised convex mathematical programming, The Anziam Journal, 34 (1992), 43-53.  doi: 10.1017/S0334270000007372.

[19]

R. N. KaulS. K. Suneja and M. K. Srivastava, Optimality criteria and duality in multiple-objective optimization involving generalized invexity, Journal of Optimization Theory and Applications, 80 (1994), 465-482.  doi: 10.1007/BF02207775.

[20]

H. KukG. M. Lee and D. S. Kim, Nonsmooth multiobjective programs with $V$-$\rho$-invexity, Indian Journal of Pure and Applied Mathematics, 29 (1998), 405-412. 

[21]

O. L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, 1969.

[22]

A. A. Megahed, H. G. Gomma, E. A. Youness and A. Z. El-Banna, Optimality conditions of $E$-convex programming for an $E$-differentiable function, Journal of Inequalities and Applications, 2013 (2013), Article number: 246. doi: 10.1186/1029-242X-2013-246.

[23]

S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, Journal of Mathematical Analysis and Applications, 189 (1995), 901-908.  doi: 10.1006/jmaa.1995.1057.

[24]

B. Mond and T. Weir, Generalized concavity and duality, in Generalized Concavity in Optimization and Economics(eds. Schaible, W.T. Ziemba), Academic press, New York, (1981), 263-275.

[25]

R. N. Mukherjee and S. K. Mishra, Sufficient optimality criteria and duality for multiobjective variational problems with $V$-invexity, Indian Journal of Pure and Applied Mathematics, 25 (1994), 801-813. 

[26]

G. R. Piao and L. Jiao, Optimality and mixed duality in multiobjective $E$-convex programming, Journal of Inequalities and Applications, 2015 (2015), 1-13.  doi: 10.1186/s13660-015-0854-6.

[27]

V. Preda, I. Stancu-Minasian, M. Beldiman and A. M. Stancu, Generalized $V$-univexity type-I for multiobjective programming with $\eta$-set functions, Journal of Global Optimization, 44 (2009), Article number: 131. doi: 10.1007/s10898-008-9315-9.

[28]

L. V. Reddy and R. N. Mukherjee, Composite nonsmooth multiobjective programs with $V$-$\rho$-invexity, Journal of Mathematical Analysis and Applications, 235 (1999), 567-577.  doi: 10.1006/jmaa.1999.6409.

[29]

C. Singh, Optimality conditions in multiobjective differentiable programming, Journal of Optimization Theory and Applications, 53 (1987), 115-123.  doi: 10.1007/BF00938820.

[30]

T. Weir and B. Mond, Preinvex functions in multiple objective optimization, Journal of Mathematical Analysis and Applications, 136 (1988), 29-38.  doi: 10.1016/0022-247X(88)90113-8.

[31]

C. Yan and B. Feng, Sufficiency and duality for nonsmooth multiobjective programming problems involving generalized $(F, \rho)$-$V$-Type I functions, Journal of Mathematical Modelling and Algorithms in Operations Research, 14 (2015), 159-172.  doi: 10.1007/s10852-014-9264-x.

[32]

E. A. Youness, $E$-convex sets, $E$-convex functions and $E$-convex programming, Journal of Optimization Theory and Applications, 102 (1999), 439-450.  doi: 10.1023/A:1021792726715.

[33]

E. A. Youness and T. Emam, Characterization of efficient solutions for multi-objective optimization problems involving semi-strong and generalized semi-strong $E$-convexity, Acta Mathematica Scientia, 28 (2008), 7-16.  doi: 10.1016/S0252-9602(08)60002-8.

show all references

References:
[1]

N. Abdulaleem, $E$-invexity and generalized $E$-invexity in $E$-differentiable multiobjective programming, inITM Web of Conferences, EDP Sciences, 24 (2019), 01002. doi: 10.1051/itmconf/20192401002.

[2]

N. Abdulaleem, $E$-optimality conditions for $E$-differentiable $E$-invex multiobjective programming problems, WSEAS Transactions on Mathematics, 18 (2019), 14-27. 

[3]

N. Abdulaleem, $E$-duality results for $E$-differentiable $E$-invex multiobjective programming problems, in Journal of Physics: Conference Series, IOP Publishing, 1294 (2019), 032027. doi: 10.1088/1742-6596/1294/3/032027.

[4]

B. Aghezzaf, M. Hachimi, Generalized invexity and duality in multiobjective programming problems, Journal of Global Optimization, (2000), 91-101. doi: 10.1023/A:1008321026317.

[5]

I. AhmadS. K. Gupta and A. Jayswal, On sufficiency and duality for nonsmooth multiobjective programming problems involving generalized $V$-$r$-invex functions, Nonlinear Analysis: Theory, Methods & Applications, 74 (2011), 5920-5928.  doi: 10.1016/j.na.2011.05.058.

[6]

T. Antczak and N. Abdulaleem, Optimality and duality results for $E$-differentiable multiobjective fractional programming problems under $E$-convexity, Journal of Inequalities and Applications, 2019 (2019), Article number: 292. doi: 10.1186/s13660-019-2237-x.

[7]

T. Antczak and N. Abdulaleem, Optimality conditions for $E$-differentiable vector optimization problems with the multiple interval-valued objective function, Journal of Industrial & Management Optimization, 16 (2020), 2971-2989.  doi: 10.3934/jimo.2019089.

[8]

T. Antczak and N. Abdulaleem, $E$-optimality conditions and Wolfe $E$-duality for $E$-differentiable vector optimization problems with inequality and equality constraints, Journal of Nonlinear Sciences and Applications, 12 (2019), 745-764.  doi: 10.22436/jnsa.012.11.06.

[9]

T. Antczak, $r$-preinvexity and $r$-invexity in mathematical programming, Computer and Mathematics with Applications, (2005), 551-566. doi: 10.1016/j.camwa.2005.01.024.

[10]

T. Antczak, The notion of $V$-$r$-invexity in differentiable multiobjective programming, Journal of Applied Analysis, (2005), 63-79. doi: 10.1515/JAA.2005.63.

[11]

T. Antczak, A class of $B-(p, r)$-invex functions and mathematical programming, Journal of Mathematical Analysis and Applications, 286 (2003), 187-206.  doi: 10.1016/S0022-247X(03)00469-4.

[12]

T. Antczak, Optimality and duality for nonsmooth multiobjective programming problems with $V$-$r$-invexity, Journal of Global Optimization, 45 (2009), 319-334.  doi: 10.1007/s10898-008-9377-8.

[13]

A. Ben-Israel and B. Mond, What is invexity?, Journal of the Australian Mathematical Society, 28 (1986), 1-9. doi: 10.1017/S0334270000005142.

[14]

B. D. Craven and B. M. Glover, Invex functions and duality, Journal of the Australian Mathematical Society, 39 (1985), 1-20.  doi: 10.1017/S1446788700022126.

[15]

M. A. Hanson and B. Mond, Further generalizations of convexity in mathematical programming, Journal of Information and Optimization Sciences, 3 (1982), 25-32.  doi: 10.1080/02522667.1982.10698716.

[16]

M. A. Hanson and B. Mond, Necessary and sufficient conditions in constrained optimization, Mathematical Programming, 37 (1987), 51-58.  doi: 10.1007/BF02591683.

[17]

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, Journal of Mathematical Analysis and Applications, 80 (1981), 545-550.  doi: 10.1016/0022-247X(81)90123-2.

[18]

V. Jeyakumar and B. Mond, On generalised convex mathematical programming, The Anziam Journal, 34 (1992), 43-53.  doi: 10.1017/S0334270000007372.

[19]

R. N. KaulS. K. Suneja and M. K. Srivastava, Optimality criteria and duality in multiple-objective optimization involving generalized invexity, Journal of Optimization Theory and Applications, 80 (1994), 465-482.  doi: 10.1007/BF02207775.

[20]

H. KukG. M. Lee and D. S. Kim, Nonsmooth multiobjective programs with $V$-$\rho$-invexity, Indian Journal of Pure and Applied Mathematics, 29 (1998), 405-412. 

[21]

O. L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, 1969.

[22]

A. A. Megahed, H. G. Gomma, E. A. Youness and A. Z. El-Banna, Optimality conditions of $E$-convex programming for an $E$-differentiable function, Journal of Inequalities and Applications, 2013 (2013), Article number: 246. doi: 10.1186/1029-242X-2013-246.

[23]

S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, Journal of Mathematical Analysis and Applications, 189 (1995), 901-908.  doi: 10.1006/jmaa.1995.1057.

[24]

B. Mond and T. Weir, Generalized concavity and duality, in Generalized Concavity in Optimization and Economics(eds. Schaible, W.T. Ziemba), Academic press, New York, (1981), 263-275.

[25]

R. N. Mukherjee and S. K. Mishra, Sufficient optimality criteria and duality for multiobjective variational problems with $V$-invexity, Indian Journal of Pure and Applied Mathematics, 25 (1994), 801-813. 

[26]

G. R. Piao and L. Jiao, Optimality and mixed duality in multiobjective $E$-convex programming, Journal of Inequalities and Applications, 2015 (2015), 1-13.  doi: 10.1186/s13660-015-0854-6.

[27]

V. Preda, I. Stancu-Minasian, M. Beldiman and A. M. Stancu, Generalized $V$-univexity type-I for multiobjective programming with $\eta$-set functions, Journal of Global Optimization, 44 (2009), Article number: 131. doi: 10.1007/s10898-008-9315-9.

[28]

L. V. Reddy and R. N. Mukherjee, Composite nonsmooth multiobjective programs with $V$-$\rho$-invexity, Journal of Mathematical Analysis and Applications, 235 (1999), 567-577.  doi: 10.1006/jmaa.1999.6409.

[29]

C. Singh, Optimality conditions in multiobjective differentiable programming, Journal of Optimization Theory and Applications, 53 (1987), 115-123.  doi: 10.1007/BF00938820.

[30]

T. Weir and B. Mond, Preinvex functions in multiple objective optimization, Journal of Mathematical Analysis and Applications, 136 (1988), 29-38.  doi: 10.1016/0022-247X(88)90113-8.

[31]

C. Yan and B. Feng, Sufficiency and duality for nonsmooth multiobjective programming problems involving generalized $(F, \rho)$-$V$-Type I functions, Journal of Mathematical Modelling and Algorithms in Operations Research, 14 (2015), 159-172.  doi: 10.1007/s10852-014-9264-x.

[32]

E. A. Youness, $E$-convex sets, $E$-convex functions and $E$-convex programming, Journal of Optimization Theory and Applications, 102 (1999), 439-450.  doi: 10.1023/A:1021792726715.

[33]

E. A. Youness and T. Emam, Characterization of efficient solutions for multi-objective optimization problems involving semi-strong and generalized semi-strong $E$-convexity, Acta Mathematica Scientia, 28 (2008), 7-16.  doi: 10.1016/S0252-9602(08)60002-8.

[1]

Tadeusz Antczak, Najeeb Abdulaleem. Optimality conditions for $ E $-differentiable vector optimization problems with the multiple interval-valued objective function. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2971-2989. doi: 10.3934/jimo.2019089

[2]

Najeeb Abdulaleem. Optimality and duality for $ E $-differentiable multiobjective programming problems involving $ E $-type Ⅰ functions. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022004

[3]

Nazih Abderrazzak Gadhi, Fatima Zahra Rahou. Sufficient optimality conditions and Mond-Weir duality results for a fractional multiobjective optimization problem. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021216

[4]

Akhlad Iqbal, Praveen Kumar. Geodesic $ \mathcal{E} $-prequasi-invex function and its applications to non-linear programming problems. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021040

[5]

Baoxiang Wang. E-Besov spaces and dissipative equations. Communications on Pure and Applied Analysis, 2004, 3 (4) : 883-919. doi: 10.3934/cpaa.2004.3.883

[6]

Francesco Mainardi. On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2267-2278. doi: 10.3934/dcdsb.2014.19.2267

[7]

Tao Chen, Yunping Jiang, Gaofei Zhang. No invariant line fields on escaping sets of the family $\lambda e^{iz}+\gamma e^{-iz}$. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1883-1890. doi: 10.3934/dcds.2013.33.1883

[8]

Waldyr M. Oliva, Gláucio Terra. Improving E. Cartan considerations on the invariance of nonholonomic mechanics. Journal of Geometric Mechanics, 2019, 11 (3) : 439-446. doi: 10.3934/jgm.2019022

[9]

Panayotis Smyrnelis. Connecting orbits in Hilbert spaces and applications to P.D.E. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2797-2818. doi: 10.3934/cpaa.2020122

[10]

Lijia Yan. Some properties of a class of $(F,E)$-$G$ generalized convex functions. Numerical Algebra, Control and Optimization, 2013, 3 (4) : 615-625. doi: 10.3934/naco.2013.3.615

[11]

Kequan Zhao, Xinmin Yang. Characterizations of the $E$-Benson proper efficiency in vector optimization problems. Numerical Algebra, Control and Optimization, 2013, 3 (4) : 643-653. doi: 10.3934/naco.2013.3.643

[12]

Augusto Visintin. P.D.E.s with hysteresis 30 years later. Discrete and Continuous Dynamical Systems - S, 2015, 8 (4) : 793-816. doi: 10.3934/dcdss.2015.8.793

[13]

M. Guru Prem Prasad, Tarakanta Nayak. Dynamics of { $\lambda tanh(e^z): \lambda \in R$\ ${ 0 }$ }. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 121-138. doi: 10.3934/dcds.2007.19.121

[14]

Alejandro Cataldo, Juan-Carlos Ferrer, Pablo A. Rey, Antoine Sauré. Design of a single window system for e-government services: the chilean case. Journal of Industrial and Management Optimization, 2018, 14 (2) : 561-582. doi: 10.3934/jimo.2017060

[15]

Vladimir V. Marchenko, Klavdii V. Maslov, Dmitry Shepelsky, V. V. Zhikov. E.Ya.Khruslov. On the occasion of his 70th birthday. Networks and Heterogeneous Media, 2008, 3 (3) : 647-650. doi: 10.3934/nhm.2008.3.647

[16]

Fei Gao. Data encryption algorithm for e-commerce platform based on blockchain technology. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1457-1470. doi: 10.3934/dcdss.2019100

[17]

Joan-Josep Climent, Juan Antonio López-Ramos. Public key protocols over the ring $E_{p}^{(m)}$. Advances in Mathematics of Communications, 2016, 10 (4) : 861-870. doi: 10.3934/amc.2016046

[18]

Caili Sang, Zhen Chen. $ E $-eigenvalue localization sets for tensors. Journal of Industrial and Management Optimization, 2020, 16 (4) : 2045-2063. doi: 10.3934/jimo.2019042

[19]

Michal Fečkan, Vassilis Rothos. Bifurcations of periodics from homoclinics in singular O.D.E.: applications to discretizations of travelling waves of P.D.E.. Communications on Pure and Applied Analysis, 2002, 1 (4) : 475-483. doi: 10.3934/cpaa.2002.1.475

[20]

Shunfu Jin, Wuyi Yue. Performance analysis and evaluation for power saving class type III in IEEE 802.16e network. Journal of Industrial and Management Optimization, 2010, 6 (3) : 691-708. doi: 10.3934/jimo.2010.6.691

 Impact Factor: 

Metrics

  • PDF downloads (527)
  • HTML views (583)
  • Cited by (0)

Other articles
by authors

[Back to Top]