In this paper, a new concept of generalized convexity is introduced for not necessarily differentiable vector optimization problems with $ E $-differentiable functions. Namely, for an $ E $-differentiable vector-valued function, the concept of $ V $-$ E $-invexity is defined as a generalization of the $ E $-differentiable $ E $-invexity notion and the concept of $ V $-invexity. Further, the sufficiency of the so-called $ E $-Karush-Kuhn-Tucker optimality conditions are established for the considered $ E $-differentiable vector optimization problems with both inequality and equality constraints under $ V $-$ E $-invexity hypotheses. Furthermore, the so-called vector $ E $-dual problem in the sense of Mond-Weir is defined for the considered $ E $-differentiable multiobjective programming problem and several $ E $-duality theorems are derived also under appropriate $ V $-$ E $-invexity assumptions.
Citation: |
[1] | N. Abdulaleem, $E$-invexity and generalized $E$-invexity in $E$-differentiable multiobjective programming, inITM Web of Conferences, EDP Sciences, 24 (2019), 01002. doi: 10.1051/itmconf/20192401002. |
[2] | N. Abdulaleem, $E$-optimality conditions for $E$-differentiable $E$-invex multiobjective programming problems, WSEAS Transactions on Mathematics, 18 (2019), 14-27. |
[3] | N. Abdulaleem, $E$-duality results for $E$-differentiable $E$-invex multiobjective programming problems, in Journal of Physics: Conference Series, IOP Publishing, 1294 (2019), 032027. doi: 10.1088/1742-6596/1294/3/032027. |
[4] | B. Aghezzaf, M. Hachimi, Generalized invexity and duality in multiobjective programming problems, Journal of Global Optimization, (2000), 91-101. doi: 10.1023/A:1008321026317. |
[5] | I. Ahmad, S. K. Gupta and A. Jayswal, On sufficiency and duality for nonsmooth multiobjective programming problems involving generalized $V$-$r$-invex functions, Nonlinear Analysis: Theory, Methods & Applications, 74 (2011), 5920-5928. doi: 10.1016/j.na.2011.05.058. |
[6] | T. Antczak and N. Abdulaleem, Optimality and duality results for $E$-differentiable multiobjective fractional programming problems under $E$-convexity, Journal of Inequalities and Applications, 2019 (2019), Article number: 292. doi: 10.1186/s13660-019-2237-x. |
[7] | T. Antczak and N. Abdulaleem, Optimality conditions for $E$-differentiable vector optimization problems with the multiple interval-valued objective function, Journal of Industrial & Management Optimization, 16 (2020), 2971-2989. doi: 10.3934/jimo.2019089. |
[8] | T. Antczak and N. Abdulaleem, $E$-optimality conditions and Wolfe $E$-duality for $E$-differentiable vector optimization problems with inequality and equality constraints, Journal of Nonlinear Sciences and Applications, 12 (2019), 745-764. doi: 10.22436/jnsa.012.11.06. |
[9] | T. Antczak, $r$-preinvexity and $r$-invexity in mathematical programming, Computer and Mathematics with Applications, (2005), 551-566. doi: 10.1016/j.camwa.2005.01.024. |
[10] | T. Antczak, The notion of $V$-$r$-invexity in differentiable multiobjective programming, Journal of Applied Analysis, (2005), 63-79. doi: 10.1515/JAA.2005.63. |
[11] | T. Antczak, A class of $B-(p, r)$-invex functions and mathematical programming, Journal of Mathematical Analysis and Applications, 286 (2003), 187-206. doi: 10.1016/S0022-247X(03)00469-4. |
[12] | T. Antczak, Optimality and duality for nonsmooth multiobjective programming problems with $V$-$r$-invexity, Journal of Global Optimization, 45 (2009), 319-334. doi: 10.1007/s10898-008-9377-8. |
[13] | A. Ben-Israel and B. Mond, What is invexity?, Journal of the Australian Mathematical Society, 28 (1986), 1-9. doi: 10.1017/S0334270000005142. |
[14] | B. D. Craven and B. M. Glover, Invex functions and duality, Journal of the Australian Mathematical Society, 39 (1985), 1-20. doi: 10.1017/S1446788700022126. |
[15] | M. A. Hanson and B. Mond, Further generalizations of convexity in mathematical programming, Journal of Information and Optimization Sciences, 3 (1982), 25-32. doi: 10.1080/02522667.1982.10698716. |
[16] | M. A. Hanson and B. Mond, Necessary and sufficient conditions in constrained optimization, Mathematical Programming, 37 (1987), 51-58. doi: 10.1007/BF02591683. |
[17] | M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, Journal of Mathematical Analysis and Applications, 80 (1981), 545-550. doi: 10.1016/0022-247X(81)90123-2. |
[18] | V. Jeyakumar and B. Mond, On generalised convex mathematical programming, The Anziam Journal, 34 (1992), 43-53. doi: 10.1017/S0334270000007372. |
[19] | R. N. Kaul, S. K. Suneja and M. K. Srivastava, Optimality criteria and duality in multiple-objective optimization involving generalized invexity, Journal of Optimization Theory and Applications, 80 (1994), 465-482. doi: 10.1007/BF02207775. |
[20] | H. Kuk, G. M. Lee and D. S. Kim, Nonsmooth multiobjective programs with $V$-$\rho$-invexity, Indian Journal of Pure and Applied Mathematics, 29 (1998), 405-412. |
[21] | O. L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, 1969. |
[22] | A. A. Megahed, H. G. Gomma, E. A. Youness and A. Z. El-Banna, Optimality conditions of $E$-convex programming for an $E$-differentiable function, Journal of Inequalities and Applications, 2013 (2013), Article number: 246. doi: 10.1186/1029-242X-2013-246. |
[23] | S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, Journal of Mathematical Analysis and Applications, 189 (1995), 901-908. doi: 10.1006/jmaa.1995.1057. |
[24] | B. Mond and T. Weir, Generalized concavity and duality, in Generalized Concavity in Optimization and Economics(eds. Schaible, W.T. Ziemba), Academic press, New York, (1981), 263-275. |
[25] | R. N. Mukherjee and S. K. Mishra, Sufficient optimality criteria and duality for multiobjective variational problems with $V$-invexity, Indian Journal of Pure and Applied Mathematics, 25 (1994), 801-813. |
[26] | G. R. Piao and L. Jiao, Optimality and mixed duality in multiobjective $E$-convex programming, Journal of Inequalities and Applications, 2015 (2015), 1-13. doi: 10.1186/s13660-015-0854-6. |
[27] | V. Preda, I. Stancu-Minasian, M. Beldiman and A. M. Stancu, Generalized $V$-univexity type-I for multiobjective programming with $\eta$-set functions, Journal of Global Optimization, 44 (2009), Article number: 131. doi: 10.1007/s10898-008-9315-9. |
[28] | L. V. Reddy and R. N. Mukherjee, Composite nonsmooth multiobjective programs with $V$-$\rho$-invexity, Journal of Mathematical Analysis and Applications, 235 (1999), 567-577. doi: 10.1006/jmaa.1999.6409. |
[29] | C. Singh, Optimality conditions in multiobjective differentiable programming, Journal of Optimization Theory and Applications, 53 (1987), 115-123. doi: 10.1007/BF00938820. |
[30] | T. Weir and B. Mond, Preinvex functions in multiple objective optimization, Journal of Mathematical Analysis and Applications, 136 (1988), 29-38. doi: 10.1016/0022-247X(88)90113-8. |
[31] | C. Yan and B. Feng, Sufficiency and duality for nonsmooth multiobjective programming problems involving generalized $(F, \rho)$-$V$-Type I functions, Journal of Mathematical Modelling and Algorithms in Operations Research, 14 (2015), 159-172. doi: 10.1007/s10852-014-9264-x. |
[32] | E. A. Youness, $E$-convex sets, $E$-convex functions and $E$-convex programming, Journal of Optimization Theory and Applications, 102 (1999), 439-450. doi: 10.1023/A:1021792726715. |
[33] | E. A. Youness and T. Emam, Characterization of efficient solutions for multi-objective optimization problems involving semi-strong and generalized semi-strong $E$-convexity, Acta Mathematica Scientia, 28 (2008), 7-16. doi: 10.1016/S0252-9602(08)60002-8. |