• Previous Article
    A dual Bregman proximal gradient method for relatively-strongly convex optimization
  • NACO Home
  • This Issue
  • Next Article
    Optimal control of a dynamical system with intermediate phase constraints and applications in cash management
doi: 10.3934/naco.2021014
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

$ V $-$ E $-invexity in $ E $-differentiable multiobjective programming

Department of Mathematics, Hadhramout University, P.O. BOX : (50511-50512), Al-Mahrah, Yemen, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland

Received  June 2020 Revised  January 2021 Early access April 2021

In this paper, a new concept of generalized convexity is introduced for not necessarily differentiable vector optimization problems with $ E $-differentiable functions. Namely, for an $ E $-differentiable vector-valued function, the concept of $ V $-$ E $-invexity is defined as a generalization of the $ E $-differentiable $ E $-invexity notion and the concept of $ V $-invexity. Further, the sufficiency of the so-called $ E $-Karush-Kuhn-Tucker optimality conditions are established for the considered $ E $-differentiable vector optimization problems with both inequality and equality constraints under $ V $-$ E $-invexity hypotheses. Furthermore, the so-called vector $ E $-dual problem in the sense of Mond-Weir is defined for the considered $ E $-differentiable multiobjective programming problem and several $ E $-duality theorems are derived also under appropriate $ V $-$ E $-invexity assumptions.

Citation: Najeeb Abdulaleem. $ V $-$ E $-invexity in $ E $-differentiable multiobjective programming. Numerical Algebra, Control & Optimization, doi: 10.3934/naco.2021014
References:
[1]

N. Abdulaleem, $E$-invexity and generalized $E$-invexity in $E$-differentiable multiobjective programming, inITM Web of Conferences, EDP Sciences, 24 (2019), 01002. doi: 10.1051/itmconf/20192401002.  Google Scholar

[2]

N. Abdulaleem, $E$-optimality conditions for $E$-differentiable $E$-invex multiobjective programming problems, WSEAS Transactions on Mathematics, 18 (2019), 14-27.   Google Scholar

[3]

N. Abdulaleem, $E$-duality results for $E$-differentiable $E$-invex multiobjective programming problems, in Journal of Physics: Conference Series, IOP Publishing, 1294 (2019), 032027. doi: 10.1088/1742-6596/1294/3/032027.  Google Scholar

[4]

B. Aghezzaf, M. Hachimi, Generalized invexity and duality in multiobjective programming problems, Journal of Global Optimization, (2000), 91-101. doi: 10.1023/A:1008321026317.  Google Scholar

[5]

I. AhmadS. K. Gupta and A. Jayswal, On sufficiency and duality for nonsmooth multiobjective programming problems involving generalized $V$-$r$-invex functions, Nonlinear Analysis: Theory, Methods & Applications, 74 (2011), 5920-5928.  doi: 10.1016/j.na.2011.05.058.  Google Scholar

[6]

T. Antczak and N. Abdulaleem, Optimality and duality results for $E$-differentiable multiobjective fractional programming problems under $E$-convexity, Journal of Inequalities and Applications, 2019 (2019), Article number: 292. doi: 10.1186/s13660-019-2237-x.  Google Scholar

[7]

T. Antczak and N. Abdulaleem, Optimality conditions for $E$-differentiable vector optimization problems with the multiple interval-valued objective function, Journal of Industrial & Management Optimization, 16 (2020), 2971-2989.  doi: 10.3934/jimo.2019089.  Google Scholar

[8]

T. Antczak and N. Abdulaleem, $E$-optimality conditions and Wolfe $E$-duality for $E$-differentiable vector optimization problems with inequality and equality constraints, Journal of Nonlinear Sciences and Applications, 12 (2019), 745-764.  doi: 10.22436/jnsa.012.11.06.  Google Scholar

[9]

T. Antczak, $r$-preinvexity and $r$-invexity in mathematical programming, Computer and Mathematics with Applications, (2005), 551-566. doi: 10.1016/j.camwa.2005.01.024.  Google Scholar

[10]

T. Antczak, The notion of $V$-$r$-invexity in differentiable multiobjective programming, Journal of Applied Analysis, (2005), 63-79. doi: 10.1515/JAA.2005.63.  Google Scholar

[11]

T. Antczak, A class of $B-(p, r)$-invex functions and mathematical programming, Journal of Mathematical Analysis and Applications, 286 (2003), 187-206.  doi: 10.1016/S0022-247X(03)00469-4.  Google Scholar

[12]

T. Antczak, Optimality and duality for nonsmooth multiobjective programming problems with $V$-$r$-invexity, Journal of Global Optimization, 45 (2009), 319-334.  doi: 10.1007/s10898-008-9377-8.  Google Scholar

[13]

A. Ben-Israel and B. Mond, What is invexity?, Journal of the Australian Mathematical Society, 28 (1986), 1-9. doi: 10.1017/S0334270000005142.  Google Scholar

[14]

B. D. Craven and B. M. Glover, Invex functions and duality, Journal of the Australian Mathematical Society, 39 (1985), 1-20.  doi: 10.1017/S1446788700022126.  Google Scholar

[15]

M. A. Hanson and B. Mond, Further generalizations of convexity in mathematical programming, Journal of Information and Optimization Sciences, 3 (1982), 25-32.  doi: 10.1080/02522667.1982.10698716.  Google Scholar

[16]

M. A. Hanson and B. Mond, Necessary and sufficient conditions in constrained optimization, Mathematical Programming, 37 (1987), 51-58.  doi: 10.1007/BF02591683.  Google Scholar

[17]

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, Journal of Mathematical Analysis and Applications, 80 (1981), 545-550.  doi: 10.1016/0022-247X(81)90123-2.  Google Scholar

[18]

V. Jeyakumar and B. Mond, On generalised convex mathematical programming, The Anziam Journal, 34 (1992), 43-53.  doi: 10.1017/S0334270000007372.  Google Scholar

[19]

R. N. KaulS. K. Suneja and M. K. Srivastava, Optimality criteria and duality in multiple-objective optimization involving generalized invexity, Journal of Optimization Theory and Applications, 80 (1994), 465-482.  doi: 10.1007/BF02207775.  Google Scholar

[20]

H. KukG. M. Lee and D. S. Kim, Nonsmooth multiobjective programs with $V$-$\rho$-invexity, Indian Journal of Pure and Applied Mathematics, 29 (1998), 405-412.   Google Scholar

[21]

O. L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, 1969.  Google Scholar

[22]

A. A. Megahed, H. G. Gomma, E. A. Youness and A. Z. El-Banna, Optimality conditions of $E$-convex programming for an $E$-differentiable function, Journal of Inequalities and Applications, 2013 (2013), Article number: 246. doi: 10.1186/1029-242X-2013-246.  Google Scholar

[23]

S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, Journal of Mathematical Analysis and Applications, 189 (1995), 901-908.  doi: 10.1006/jmaa.1995.1057.  Google Scholar

[24]

B. Mond and T. Weir, Generalized concavity and duality, in Generalized Concavity in Optimization and Economics(eds. Schaible, W.T. Ziemba), Academic press, New York, (1981), 263-275.  Google Scholar

[25]

R. N. Mukherjee and S. K. Mishra, Sufficient optimality criteria and duality for multiobjective variational problems with $V$-invexity, Indian Journal of Pure and Applied Mathematics, 25 (1994), 801-813.   Google Scholar

[26]

G. R. Piao and L. Jiao, Optimality and mixed duality in multiobjective $E$-convex programming, Journal of Inequalities and Applications, 2015 (2015), 1-13.  doi: 10.1186/s13660-015-0854-6.  Google Scholar

[27]

V. Preda, I. Stancu-Minasian, M. Beldiman and A. M. Stancu, Generalized $V$-univexity type-I for multiobjective programming with $\eta$-set functions, Journal of Global Optimization, 44 (2009), Article number: 131. doi: 10.1007/s10898-008-9315-9.  Google Scholar

[28]

L. V. Reddy and R. N. Mukherjee, Composite nonsmooth multiobjective programs with $V$-$\rho$-invexity, Journal of Mathematical Analysis and Applications, 235 (1999), 567-577.  doi: 10.1006/jmaa.1999.6409.  Google Scholar

[29]

C. Singh, Optimality conditions in multiobjective differentiable programming, Journal of Optimization Theory and Applications, 53 (1987), 115-123.  doi: 10.1007/BF00938820.  Google Scholar

[30]

T. Weir and B. Mond, Preinvex functions in multiple objective optimization, Journal of Mathematical Analysis and Applications, 136 (1988), 29-38.  doi: 10.1016/0022-247X(88)90113-8.  Google Scholar

[31]

C. Yan and B. Feng, Sufficiency and duality for nonsmooth multiobjective programming problems involving generalized $(F, \rho)$-$V$-Type I functions, Journal of Mathematical Modelling and Algorithms in Operations Research, 14 (2015), 159-172.  doi: 10.1007/s10852-014-9264-x.  Google Scholar

[32]

E. A. Youness, $E$-convex sets, $E$-convex functions and $E$-convex programming, Journal of Optimization Theory and Applications, 102 (1999), 439-450.  doi: 10.1023/A:1021792726715.  Google Scholar

[33]

E. A. Youness and T. Emam, Characterization of efficient solutions for multi-objective optimization problems involving semi-strong and generalized semi-strong $E$-convexity, Acta Mathematica Scientia, 28 (2008), 7-16.  doi: 10.1016/S0252-9602(08)60002-8.  Google Scholar

show all references

References:
[1]

N. Abdulaleem, $E$-invexity and generalized $E$-invexity in $E$-differentiable multiobjective programming, inITM Web of Conferences, EDP Sciences, 24 (2019), 01002. doi: 10.1051/itmconf/20192401002.  Google Scholar

[2]

N. Abdulaleem, $E$-optimality conditions for $E$-differentiable $E$-invex multiobjective programming problems, WSEAS Transactions on Mathematics, 18 (2019), 14-27.   Google Scholar

[3]

N. Abdulaleem, $E$-duality results for $E$-differentiable $E$-invex multiobjective programming problems, in Journal of Physics: Conference Series, IOP Publishing, 1294 (2019), 032027. doi: 10.1088/1742-6596/1294/3/032027.  Google Scholar

[4]

B. Aghezzaf, M. Hachimi, Generalized invexity and duality in multiobjective programming problems, Journal of Global Optimization, (2000), 91-101. doi: 10.1023/A:1008321026317.  Google Scholar

[5]

I. AhmadS. K. Gupta and A. Jayswal, On sufficiency and duality for nonsmooth multiobjective programming problems involving generalized $V$-$r$-invex functions, Nonlinear Analysis: Theory, Methods & Applications, 74 (2011), 5920-5928.  doi: 10.1016/j.na.2011.05.058.  Google Scholar

[6]

T. Antczak and N. Abdulaleem, Optimality and duality results for $E$-differentiable multiobjective fractional programming problems under $E$-convexity, Journal of Inequalities and Applications, 2019 (2019), Article number: 292. doi: 10.1186/s13660-019-2237-x.  Google Scholar

[7]

T. Antczak and N. Abdulaleem, Optimality conditions for $E$-differentiable vector optimization problems with the multiple interval-valued objective function, Journal of Industrial & Management Optimization, 16 (2020), 2971-2989.  doi: 10.3934/jimo.2019089.  Google Scholar

[8]

T. Antczak and N. Abdulaleem, $E$-optimality conditions and Wolfe $E$-duality for $E$-differentiable vector optimization problems with inequality and equality constraints, Journal of Nonlinear Sciences and Applications, 12 (2019), 745-764.  doi: 10.22436/jnsa.012.11.06.  Google Scholar

[9]

T. Antczak, $r$-preinvexity and $r$-invexity in mathematical programming, Computer and Mathematics with Applications, (2005), 551-566. doi: 10.1016/j.camwa.2005.01.024.  Google Scholar

[10]

T. Antczak, The notion of $V$-$r$-invexity in differentiable multiobjective programming, Journal of Applied Analysis, (2005), 63-79. doi: 10.1515/JAA.2005.63.  Google Scholar

[11]

T. Antczak, A class of $B-(p, r)$-invex functions and mathematical programming, Journal of Mathematical Analysis and Applications, 286 (2003), 187-206.  doi: 10.1016/S0022-247X(03)00469-4.  Google Scholar

[12]

T. Antczak, Optimality and duality for nonsmooth multiobjective programming problems with $V$-$r$-invexity, Journal of Global Optimization, 45 (2009), 319-334.  doi: 10.1007/s10898-008-9377-8.  Google Scholar

[13]

A. Ben-Israel and B. Mond, What is invexity?, Journal of the Australian Mathematical Society, 28 (1986), 1-9. doi: 10.1017/S0334270000005142.  Google Scholar

[14]

B. D. Craven and B. M. Glover, Invex functions and duality, Journal of the Australian Mathematical Society, 39 (1985), 1-20.  doi: 10.1017/S1446788700022126.  Google Scholar

[15]

M. A. Hanson and B. Mond, Further generalizations of convexity in mathematical programming, Journal of Information and Optimization Sciences, 3 (1982), 25-32.  doi: 10.1080/02522667.1982.10698716.  Google Scholar

[16]

M. A. Hanson and B. Mond, Necessary and sufficient conditions in constrained optimization, Mathematical Programming, 37 (1987), 51-58.  doi: 10.1007/BF02591683.  Google Scholar

[17]

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, Journal of Mathematical Analysis and Applications, 80 (1981), 545-550.  doi: 10.1016/0022-247X(81)90123-2.  Google Scholar

[18]

V. Jeyakumar and B. Mond, On generalised convex mathematical programming, The Anziam Journal, 34 (1992), 43-53.  doi: 10.1017/S0334270000007372.  Google Scholar

[19]

R. N. KaulS. K. Suneja and M. K. Srivastava, Optimality criteria and duality in multiple-objective optimization involving generalized invexity, Journal of Optimization Theory and Applications, 80 (1994), 465-482.  doi: 10.1007/BF02207775.  Google Scholar

[20]

H. KukG. M. Lee and D. S. Kim, Nonsmooth multiobjective programs with $V$-$\rho$-invexity, Indian Journal of Pure and Applied Mathematics, 29 (1998), 405-412.   Google Scholar

[21]

O. L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, 1969.  Google Scholar

[22]

A. A. Megahed, H. G. Gomma, E. A. Youness and A. Z. El-Banna, Optimality conditions of $E$-convex programming for an $E$-differentiable function, Journal of Inequalities and Applications, 2013 (2013), Article number: 246. doi: 10.1186/1029-242X-2013-246.  Google Scholar

[23]

S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, Journal of Mathematical Analysis and Applications, 189 (1995), 901-908.  doi: 10.1006/jmaa.1995.1057.  Google Scholar

[24]

B. Mond and T. Weir, Generalized concavity and duality, in Generalized Concavity in Optimization and Economics(eds. Schaible, W.T. Ziemba), Academic press, New York, (1981), 263-275.  Google Scholar

[25]

R. N. Mukherjee and S. K. Mishra, Sufficient optimality criteria and duality for multiobjective variational problems with $V$-invexity, Indian Journal of Pure and Applied Mathematics, 25 (1994), 801-813.   Google Scholar

[26]

G. R. Piao and L. Jiao, Optimality and mixed duality in multiobjective $E$-convex programming, Journal of Inequalities and Applications, 2015 (2015), 1-13.  doi: 10.1186/s13660-015-0854-6.  Google Scholar

[27]

V. Preda, I. Stancu-Minasian, M. Beldiman and A. M. Stancu, Generalized $V$-univexity type-I for multiobjective programming with $\eta$-set functions, Journal of Global Optimization, 44 (2009), Article number: 131. doi: 10.1007/s10898-008-9315-9.  Google Scholar

[28]

L. V. Reddy and R. N. Mukherjee, Composite nonsmooth multiobjective programs with $V$-$\rho$-invexity, Journal of Mathematical Analysis and Applications, 235 (1999), 567-577.  doi: 10.1006/jmaa.1999.6409.  Google Scholar

[29]

C. Singh, Optimality conditions in multiobjective differentiable programming, Journal of Optimization Theory and Applications, 53 (1987), 115-123.  doi: 10.1007/BF00938820.  Google Scholar

[30]

T. Weir and B. Mond, Preinvex functions in multiple objective optimization, Journal of Mathematical Analysis and Applications, 136 (1988), 29-38.  doi: 10.1016/0022-247X(88)90113-8.  Google Scholar

[31]

C. Yan and B. Feng, Sufficiency and duality for nonsmooth multiobjective programming problems involving generalized $(F, \rho)$-$V$-Type I functions, Journal of Mathematical Modelling and Algorithms in Operations Research, 14 (2015), 159-172.  doi: 10.1007/s10852-014-9264-x.  Google Scholar

[32]

E. A. Youness, $E$-convex sets, $E$-convex functions and $E$-convex programming, Journal of Optimization Theory and Applications, 102 (1999), 439-450.  doi: 10.1023/A:1021792726715.  Google Scholar

[33]

E. A. Youness and T. Emam, Characterization of efficient solutions for multi-objective optimization problems involving semi-strong and generalized semi-strong $E$-convexity, Acta Mathematica Scientia, 28 (2008), 7-16.  doi: 10.1016/S0252-9602(08)60002-8.  Google Scholar

[1]

Tadeusz Antczak, Najeeb Abdulaleem. Optimality conditions for $ E $-differentiable vector optimization problems with the multiple interval-valued objective function. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2971-2989. doi: 10.3934/jimo.2019089

[2]

Akhlad Iqbal, Praveen Kumar. Geodesic $ \mathcal{E} $-prequasi-invex function and its applications to non-linear programming problems. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021040

[3]

Baoxiang Wang. E-Besov spaces and dissipative equations. Communications on Pure & Applied Analysis, 2004, 3 (4) : 883-919. doi: 10.3934/cpaa.2004.3.883

[4]

Francesco Mainardi. On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2267-2278. doi: 10.3934/dcdsb.2014.19.2267

[5]

Tao Chen, Yunping Jiang, Gaofei Zhang. No invariant line fields on escaping sets of the family $\lambda e^{iz}+\gamma e^{-iz}$. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 1883-1890. doi: 10.3934/dcds.2013.33.1883

[6]

Waldyr M. Oliva, Gláucio Terra. Improving E. Cartan considerations on the invariance of nonholonomic mechanics. Journal of Geometric Mechanics, 2019, 11 (3) : 439-446. doi: 10.3934/jgm.2019022

[7]

Panayotis Smyrnelis. Connecting orbits in Hilbert spaces and applications to P.D.E. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2797-2818. doi: 10.3934/cpaa.2020122

[8]

Lijia Yan. Some properties of a class of $(F,E)$-$G$ generalized convex functions. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 615-625. doi: 10.3934/naco.2013.3.615

[9]

Kequan Zhao, Xinmin Yang. Characterizations of the $E$-Benson proper efficiency in vector optimization problems. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 643-653. doi: 10.3934/naco.2013.3.643

[10]

Augusto Visintin. P.D.E.s with hysteresis 30 years later. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 793-816. doi: 10.3934/dcdss.2015.8.793

[11]

M. Guru Prem Prasad, Tarakanta Nayak. Dynamics of { $\lambda tanh(e^z): \lambda \in R$\ ${ 0 }$ }. Discrete & Continuous Dynamical Systems, 2007, 19 (1) : 121-138. doi: 10.3934/dcds.2007.19.121

[12]

Alejandro Cataldo, Juan-Carlos Ferrer, Pablo A. Rey, Antoine Sauré. Design of a single window system for e-government services: the chilean case. Journal of Industrial & Management Optimization, 2018, 14 (2) : 561-582. doi: 10.3934/jimo.2017060

[13]

Vladimir V. Marchenko, Klavdii V. Maslov, Dmitry Shepelsky, V. V. Zhikov. E.Ya.Khruslov. On the occasion of his 70th birthday. Networks & Heterogeneous Media, 2008, 3 (3) : 647-650. doi: 10.3934/nhm.2008.3.647

[14]

Fei Gao. Data encryption algorithm for e-commerce platform based on blockchain technology. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1457-1470. doi: 10.3934/dcdss.2019100

[15]

Joan-Josep Climent, Juan Antonio López-Ramos. Public key protocols over the ring $E_{p}^{(m)}$. Advances in Mathematics of Communications, 2016, 10 (4) : 861-870. doi: 10.3934/amc.2016046

[16]

Caili Sang, Zhen Chen. $ E $-eigenvalue localization sets for tensors. Journal of Industrial & Management Optimization, 2020, 16 (4) : 2045-2063. doi: 10.3934/jimo.2019042

[17]

Michal Fečkan, Vassilis Rothos. Bifurcations of periodics from homoclinics in singular O.D.E.: applications to discretizations of travelling waves of P.D.E.. Communications on Pure & Applied Analysis, 2002, 1 (4) : 475-483. doi: 10.3934/cpaa.2002.1.475

[18]

Shunfu Jin, Wuyi Yue. Performance analysis and evaluation for power saving class type III in IEEE 802.16e network. Journal of Industrial & Management Optimization, 2010, 6 (3) : 691-708. doi: 10.3934/jimo.2010.6.691

[19]

Frank Merle, Hatem Zaag. O.D.E. type behavior of blow-up solutions of nonlinear heat equations. Discrete & Continuous Dynamical Systems, 2002, 8 (2) : 435-450. doi: 10.3934/dcds.2002.8.435

[20]

Jianbin Li, Mengcheng Guan, Zhiyuan Chen. Optimal inventory policy for fast-moving consumer goods under e-commerce environment. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1769-1781. doi: 10.3934/jimo.2019028

 Impact Factor: 

Article outline

[Back to Top]