\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Some representations of moore-penrose inverse for the sum of two operators and the extension of the fill-fishkind formula

Abstract Full Text(HTML) Related Papers Cited by
  • In the setting of arbitrary Hilbert spaces, we give a representation of M-P inverse of the sum of linear operators $ A+B $ under suitable conditions. Based on the full-rank decomposition of an operator, we prove that the extension of the Fill-Fishkind formula for $ A $ and $ B $ with closed ranges, remains valid, keeping the same conditions of Fill-Fishkind formula for two matrices, also we obtain an analogous formula under the Fill-Fishkind conditions, beyond we derive some representations of M-P inverse of a 2-by-2 block operator with disjoint ranges.

    Mathematics Subject Classification: Primary: 15A09, Secondary: 47A05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. L. AriasG. Corach and A. Maestripieri, Range additivity, shorted operator and the Sherman- Morrison -Woodbury formula, Linear Algebra Appl., 467 (2015), 86-99.  doi: 10.1016/j.laa.2014.11.001.
    [2] A. Ben-Israel and T. N. E Greville, Generalized Inverses, Theory and Applications, 2nd ed Berlin Springer, New York, 2003.
    [3] S. L. Campbell and C. D Meyer, Generalized Inverses of Linear Transformations, Dover Publ., New York, 1979. doi: 10.1137/1.9780898719048.
    [4] S. R. Caradus, Generalized Inverses and Operator Theory, Queen's paper in pure and applied mathematics, Queen's University, Kingston, 1978.
    [5] R. E. Cline, Representations for the generalized inverse of sum of matrices, SIAM J. Numer. Anal., 2 (1965), 99-114.  doi: 10.1137/0702008.
    [6] F. Deutsch, The angle between subspaces of a Hilbert space, in Approximation Theory, Wavelets and Applications(ed. S. P. Singh), Kluwer Academic Publ., (1995), 107–130. doi: 10.1007/978-94-015-8577-4_7.
    [7] M. S. Djikić, Extensions of the Fill–Fishkind formula and the infimum – parallel sum relation, Linear and Multilinear Algebra, 64 (2016), 2335-2349.  doi: 10.1080/03081087.2016.1155532.
    [8] D. S. Djordjević and N. Č. Dinčić, Reverse order law for Moore-Penrose inverse, Journal Math. Anal. Appl., 361 (2010), 252-261.  doi: 10.1016/j.jmaa.2009.08.056.
    [9] D. S. Dordević and P. S. Stanimirović, General representations of pseudoinverses, Matematicki vesnik, 51 (1999), 69-76. 
    [10] J. A. Fill and D. E. Fishkind, The Moore–Penrose generalized inverse for sums of matrices, SIAM J. Matrix Anal. Appl., 21 (1999), 629-635.  doi: 10.1137/S0895479897329692.
    [11] J. Groß, On oblique projection, rank additivity and the Moore-Penrose inverse of the sum of two matrices, Linear and Multilinear Algebra, 46 (1999), 265-275.  doi: 10.1080/03081089908818620.
    [12] M. R. Hestenes, Relative hermitian matrices, Pacific Journal Math., 11 (1961), 225-245.  doi: 10.2140/pjm.1961.11.225.
    [13] S. Izumino, Product of operators with closed range and an extension of the revers order law, Tôhoku. Math. J., 34 (1982), 43–52. doi: 10.2748/tmj/1178229307.
  • 加载中
SHARE

Article Metrics

HTML views(1027) PDF downloads(674) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return