• Previous Article
    Second order cone programming formulation of the fixed cost allocation in DEA based on Nash bargaining game
  • NACO Home
  • This Issue
  • Next Article
    Caputo fractional derivative operational matrices of Legendre and Chebyshev wavelets in fractional delay optimal control
doi: 10.3934/naco.2021016
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Iterative Rational Krylov Algorithms for model reduction of a class of constrained structural dynamic system with Engineering applications

1. 

School of Mechatronic Engineering and Automation and, Shanghai Key Laboratory of Power Station Automation Technology, Shanghai University, Shanghai - 200444, China

2. 

Department of Mathematics and Physics, North South University, Dhaka - 1229, Bangladesh

3. 

Department of Mathematics, Chittagong University, Chittagong - 4331, Bangladesh

4. 

Department of Electrical and Computer Engineering, North South University, Dhaka - 1229, Bangladesh

Received  January 2021 Revised  April 2021 Early access May 2021

This paper discusses model order reduction of large sparse second-order index-3 differential algebraic equations (DAEs) by applying Iterative Rational Krylov Algorithm (IRKA). In general, such DAEs arise in constraint mechanics, multibody dynamics, mechatronics and many other branches of sciences and technologies. By deflecting the algebraic equations the second-order index-3 system can be altered into an equivalent standard second-order system. This can be done by projecting the system onto the null space of the constraint matrix. However, creating the projector is computationally expensive and it yields huge bottleneck during the implementation. This paper shows how to find a reduce order model without projecting the system onto the null space of the constraint matrix explicitly. To show the efficiency of the theoretical works we apply them to several data of second-order index-3 models and experimental resultants are discussed in the paper.

Citation: Xin Du, M. Monir Uddin, A. Mostakim Fony, Md. Tanzim Hossain, Md. Nazmul Islam Shuzan. Iterative Rational Krylov Algorithms for model reduction of a class of constrained structural dynamic system with Engineering applications. Numerical Algebra, Control & Optimization, doi: 10.3934/naco.2021016
References:
[1]

M. I. Ahmad and P. Benner, Interpolatory model reduction techniques for linear second-order descriptor systems, in Proc. European Control Conf. ECC 2014, Strasbourg, IEEE, (2014), 1075–1079. Google Scholar

[2]

A. Antoulas, Approximation of Large-Scale Dynamical Systems, Ser. Advances in Design and Control. Philadelphia, PA: SIAM Publications, 6 (2005). doi: 10.1137/1.9780898718713.  Google Scholar

[3]

F. Bennini, Ordnungsreduktion von elektrostatisch-mechanischen Finite Elemente Modellen auf der Basis der modalen Zerlegung, Ph. D. Thesis, Technische Universität Chemnitz, Chemnitz, 2005. Google Scholar

[4]

P. BennerJ. Saak and M. M. Uddin, Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control, Numerical Algebra, Control and Optimization, 6 (2016), 1-20.  doi: 10.3934/naco.2016.6.1.  Google Scholar

[5]

E. Eich-Soellner and C. Führer, Numerical Methods in Multibody Dynamics, Ser. European Consortium for Mathematics in Industry, Teubner, 1998. doi: 10.1007/978-3-663-09828-7.  Google Scholar

[6]

S. GugercinA. C. Antoulas and C. A. Beattie, $\mathcal{H}_2$ model reduction for large-scale dynamical systems, SIAM J. Matrix Anal. Appl., 30 (2008), 609-638.  doi: 10.1137/060666123.  Google Scholar

[7]

S. Gugercin, T. Stykel and S. Wyatt, Model reduction of descriptor systems by interpolatory projection methods, SIAM J. Sci. Comput., 35 (2013), B1010–B1033. doi: 10.1137/130906635.  Google Scholar

[8]

M. HeinkenschlossD. C. Sorensen and K. Sun, Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations, SIAM J. Sci. Comput., 30 (2008), 1038-1063.  doi: 10.1137/070681910.  Google Scholar

[9]

V. Mehrmann and T. Stykel, Balanced truncation model reduction for large-scale systems in descriptor form, Chapter 20 of [3], (2005), 357–361. doi: 10.1007/3-540-27909-1_3.  Google Scholar

[10]

B. C. Moore, Principal component analysis in linear systems: controllability, observability, and model reduction, IEEE Trans. Autom. Control, AC–26 (1981), 17-32.  doi: 10.1109/TAC.1981.1102568.  Google Scholar

[11]

M. M. Rahman, M. M. Uddin, L. S. Andallah and M. Uddin, Tangential interpolatory projections for a class of second-order index-1 descriptor systems and application to mechatronics, Production Engineering, (2020), 1–11. Google Scholar

[12]

R. Riaza, Differential-Algebraic Systems. Analytical Aspects and Circuit Applications, World Scientific Publishing Co. Pte. Ltd., Singapore, 2008. doi: 10.1142/6746.  Google Scholar

[13]

F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001), 235-286.  doi: 10.1137/S0036144500381988.  Google Scholar

[14]

N. Truhar and K. Veselić, Bounds on the trace of a solution to the Lyapunov equation with a general stable matrix, Syst. Cont. Lett., 56 (2007), 493-503.  doi: 10.1016/j.sysconle.2007.02.003.  Google Scholar

[15]

M. M. Uddin, Computational Methods for Model Reduction of Large-Scale Sparse Structured Descriptor Systems, Ph. D. Thesis, Otto-von-Guericke-Universität, Magdeburg, Germany, 2015. Google Scholar

[16]

M. M. Uddin, Gramian-based model-order reduction of constrained structural dynamic systems, IET Control Theory & Applications, 12 (2018), 2337-2346.  doi: 10.1049/iet-cta.2018.5580.  Google Scholar

[17]

M. M. Uddin, Computational Methods for Approximation of Large-Scale Dynamical Systems, Chapman and Hall/CRC, New York, USA, 2019. doi: 10.1201/9781351028622.  Google Scholar

[18]

M. M. Uddin, Structure preserving model order reduction of a class of second-order descriptor systems via balanced truncation, Applied Numerical Mathematics, 152 (2020), 185-198.  doi: 10.1016/j.apnum.2019.12.010.  Google Scholar

[19]

M. M. Uddin, Computational Techniques for Structure Preserving Model Reduction, in Proceedings of International Joint Conference on Computational Intelligence: IJCCI, Springer Nature, 2019. Google Scholar

[20]

S. Wyatt, Issues in Interpolatory Model Reduction: Inexact Solves, Second Order Systems and Daes, Ph. D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA, 2012.  Google Scholar

show all references

References:
[1]

M. I. Ahmad and P. Benner, Interpolatory model reduction techniques for linear second-order descriptor systems, in Proc. European Control Conf. ECC 2014, Strasbourg, IEEE, (2014), 1075–1079. Google Scholar

[2]

A. Antoulas, Approximation of Large-Scale Dynamical Systems, Ser. Advances in Design and Control. Philadelphia, PA: SIAM Publications, 6 (2005). doi: 10.1137/1.9780898718713.  Google Scholar

[3]

F. Bennini, Ordnungsreduktion von elektrostatisch-mechanischen Finite Elemente Modellen auf der Basis der modalen Zerlegung, Ph. D. Thesis, Technische Universität Chemnitz, Chemnitz, 2005. Google Scholar

[4]

P. BennerJ. Saak and M. M. Uddin, Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control, Numerical Algebra, Control and Optimization, 6 (2016), 1-20.  doi: 10.3934/naco.2016.6.1.  Google Scholar

[5]

E. Eich-Soellner and C. Führer, Numerical Methods in Multibody Dynamics, Ser. European Consortium for Mathematics in Industry, Teubner, 1998. doi: 10.1007/978-3-663-09828-7.  Google Scholar

[6]

S. GugercinA. C. Antoulas and C. A. Beattie, $\mathcal{H}_2$ model reduction for large-scale dynamical systems, SIAM J. Matrix Anal. Appl., 30 (2008), 609-638.  doi: 10.1137/060666123.  Google Scholar

[7]

S. Gugercin, T. Stykel and S. Wyatt, Model reduction of descriptor systems by interpolatory projection methods, SIAM J. Sci. Comput., 35 (2013), B1010–B1033. doi: 10.1137/130906635.  Google Scholar

[8]

M. HeinkenschlossD. C. Sorensen and K. Sun, Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations, SIAM J. Sci. Comput., 30 (2008), 1038-1063.  doi: 10.1137/070681910.  Google Scholar

[9]

V. Mehrmann and T. Stykel, Balanced truncation model reduction for large-scale systems in descriptor form, Chapter 20 of [3], (2005), 357–361. doi: 10.1007/3-540-27909-1_3.  Google Scholar

[10]

B. C. Moore, Principal component analysis in linear systems: controllability, observability, and model reduction, IEEE Trans. Autom. Control, AC–26 (1981), 17-32.  doi: 10.1109/TAC.1981.1102568.  Google Scholar

[11]

M. M. Rahman, M. M. Uddin, L. S. Andallah and M. Uddin, Tangential interpolatory projections for a class of second-order index-1 descriptor systems and application to mechatronics, Production Engineering, (2020), 1–11. Google Scholar

[12]

R. Riaza, Differential-Algebraic Systems. Analytical Aspects and Circuit Applications, World Scientific Publishing Co. Pte. Ltd., Singapore, 2008. doi: 10.1142/6746.  Google Scholar

[13]

F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001), 235-286.  doi: 10.1137/S0036144500381988.  Google Scholar

[14]

N. Truhar and K. Veselić, Bounds on the trace of a solution to the Lyapunov equation with a general stable matrix, Syst. Cont. Lett., 56 (2007), 493-503.  doi: 10.1016/j.sysconle.2007.02.003.  Google Scholar

[15]

M. M. Uddin, Computational Methods for Model Reduction of Large-Scale Sparse Structured Descriptor Systems, Ph. D. Thesis, Otto-von-Guericke-Universität, Magdeburg, Germany, 2015. Google Scholar

[16]

M. M. Uddin, Gramian-based model-order reduction of constrained structural dynamic systems, IET Control Theory & Applications, 12 (2018), 2337-2346.  doi: 10.1049/iet-cta.2018.5580.  Google Scholar

[17]

M. M. Uddin, Computational Methods for Approximation of Large-Scale Dynamical Systems, Chapman and Hall/CRC, New York, USA, 2019. doi: 10.1201/9781351028622.  Google Scholar

[18]

M. M. Uddin, Structure preserving model order reduction of a class of second-order descriptor systems via balanced truncation, Applied Numerical Mathematics, 152 (2020), 185-198.  doi: 10.1016/j.apnum.2019.12.010.  Google Scholar

[19]

M. M. Uddin, Computational Techniques for Structure Preserving Model Reduction, in Proceedings of International Joint Conference on Computational Intelligence: IJCCI, Springer Nature, 2019. Google Scholar

[20]

S. Wyatt, Issues in Interpolatory Model Reduction: Inexact Solves, Second Order Systems and Daes, Ph. D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA, 2012.  Google Scholar

Figure 1.  Comparison of original and the 30 dimensional reduced models for the DSMS
Figure 2.  Comparison of the original and 30 dimensional reduced models for the TCOM
Figure 3.  Comparison of the original and 30 dimensional reduced models computed by IRKA and balanced truncation for the TCOM
Figure 4.  Time comparisons of both balanced truncation and IRKA for the TCOM
Table 1.  The dimension of the tested models including number of differential and algebraic variables, inputs and outputs
models dimension n1 and n2 inputs/outputs
DSMS 2200 2000 and 200 1/3
TCOM 11001 6001 and 5000 1/1
models dimension n1 and n2 inputs/outputs
DSMS 2200 2000 and 200 1/3
TCOM 11001 6001 and 5000 1/1
[1]

M. Sumon Hossain, M. Monir Uddin. Iterative methods for solving large sparse Lyapunov equations and application to model reduction of index 1 differential-algebraic-equations. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 173-186. doi: 10.3934/naco.2019013

[2]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[3]

Ai-Guo Wu, Ying Zhang, Hui-Jie Sun. Parametric Smith iterative algorithms for discrete Lyapunov matrix equations. Journal of Industrial & Management Optimization, 2020, 16 (6) : 3047-3063. doi: 10.3934/jimo.2019093

[4]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[5]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[6]

Yingjie Bi, Siyu Liu, Yong Li. Periodic solutions of differential-algebraic equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1383-1395. doi: 10.3934/dcdsb.2019232

[7]

Vu Hoang Linh, Volker Mehrmann. Spectral analysis for linear differential-algebraic equations. Conference Publications, 2011, 2011 (Special) : 991-1000. doi: 10.3934/proc.2011.2011.991

[8]

Carolin Kreisbeck. A note on $3$d-$1$d dimension reduction with differential constraints. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 55-73. doi: 10.3934/dcdss.2017003

[9]

Andrei Korobeinikov, Aleksei Archibasov, Vladimir Sobolev. Order reduction for an RNA virus evolution model. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1007-1016. doi: 10.3934/mbe.2015.12.1007

[10]

Martin Redmann, Peter Benner. Approximation and model order reduction for second order systems with Levy-noise. Conference Publications, 2015, 2015 (special) : 945-953. doi: 10.3934/proc.2015.0945

[11]

Belgacem Rahal, Cherif Zaidi. On finite Morse index solutions of higher order fractional elliptic equations. Evolution Equations & Control Theory, 2021, 10 (3) : 575-597. doi: 10.3934/eect.2020081

[12]

Jason R. Scott, Stephen Campbell. Auxiliary signal design for failure detection in differential-algebraic equations. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 151-179. doi: 10.3934/naco.2014.4.151

[13]

Jun Zhou, Jun Shen. Positive solutions of iterative functional differential equations and application to mixed-type functional differential equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021198

[14]

Dimitri Breda, Sara Della Schiava. Pseudospectral reduction to compute Lyapunov exponents of delay differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2727-2741. doi: 10.3934/dcdsb.2018092

[15]

Piotr Pokora, Tomasz Szemberg. Minkowski bases on algebraic surfaces with rational polyhedral pseudo-effective cone. Electronic Research Announcements, 2014, 21: 126-131. doi: 10.3934/era.2014.21.126

[16]

Ruijun Zhao, Yong-Tao Zhang, Shanqin Chen. Krylov implicit integration factor WENO method for SIR model with directed diffusion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4983-5001. doi: 10.3934/dcdsb.2019041

[17]

Abdeslem Hafid Bentbib, Smahane El-Halouy, El Mostafa Sadek. Extended Krylov subspace methods for solving Sylvester and Stein tensor equations. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021026

[18]

Jan Sieber. Finding periodic orbits in state-dependent delay differential equations as roots of algebraic equations. Discrete & Continuous Dynamical Systems, 2012, 32 (8) : 2607-2651. doi: 10.3934/dcds.2012.32.2607

[19]

Aihua Fan, Shilei Fan, Lingmin Liao, Yuefei Wang. Minimality of p-adic rational maps with good reduction. Discrete & Continuous Dynamical Systems, 2017, 37 (6) : 3161-3182. doi: 10.3934/dcds.2017135

[20]

Peter Benner, Tobias Breiten, Carsten Hartmann, Burkhard Schmidt. Model reduction of controlled Fokker–Planck and Liouville–von Neumann equations. Journal of Computational Dynamics, 2020, 7 (1) : 1-33. doi: 10.3934/jcd.2020001

 Impact Factor: 

Metrics

  • PDF downloads (91)
  • HTML views (217)
  • Cited by (0)

[Back to Top]