• Previous Article
    Modelling and analysis of prey-predator model involving predation of mature prey using delay differential equations
  • NACO Home
  • This Issue
  • Next Article
    Adaptive controllability of microscopic chaos generated in chemical reactor system using anti-synchronization strategy
doi: 10.3934/naco.2021020
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Convex optimization without convexity of constraints on non-necessarily convex sets and its applications in customer satisfaction in automotive industry

Faculty of Mathematical Sciences, University of Guilan., Rasht, 41996-13776, Iran

* Corresponding author: Kamran Jalilian

Received  August 2020 Revised  March 2021 Early access June 2021

In the present paper, some necessary and su?cient optimality conditions for a convex optimization problem over inequality constraints are presented which are not necessarily convex and are based on convex intersection of non-necessarily convex sets. The oriented distance function and a characterization of the normal cone of the feasible set are used to obtain the optimality conditions. In the second part of the paper, a non-linear smooth optimization model for customer satisfaction in automotive industry is introduced. The results of the first part are applied to solve this problem theoretically.

Citation: Kamran Jalilian, Kameleh Nasiri Pirbazari. Convex optimization without convexity of constraints on non-necessarily convex sets and its applications in customer satisfaction in automotive industry. Numerical Algebra, Control and Optimization, doi: 10.3934/naco.2021020
References:
[1]

E. AlleviJ. E. Martínez-Legaz and R. Riccardi, Optimality conditions for convex problems on intersections of non necessarily convex sets, Journal of Global Optimization, 77 (2020), 143-155.  doi: 10.1007/s10898-019-00849-z.

[2]

T. W. Andreassen and B. Lindestad, Customer loyalty and complex services, International Journal of Service Industry Management, 9 (1998), 7-23. 

[3]

M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Nonlinear Programming, Wiley, New Jersey, 2006.

[4]

Y. Bilan, Sustainable development of a company: Building of new level relationship with the consumers of XXI. Century, Amfiteatru Economic, 15 (2013), 687-701. 

[5]

M. Bruhn and M. A. Grund, Development and implementation of national customer satisfaction indices: the Swiss Index of Customer Satisfaction (SWICS), Total Quality Management, 11 (2000), 1017-1028. 

[6] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, New York, 2004.  doi: 10.1017/CBO9780511804441.
[7]

N. H. ChieuV. JeyakumarG. Li and H. Mohebi, Constraint qualifications for convex optimization without convexity of constraints: New connections and applications to best approximation, European Journal of Operational Research, 265 (2018), 19-25.  doi: 10.1016/j.ejor.2017.07.038.

[8]

F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer, New York, 1998.

[9]

J. Dutta and C. S. Lalitha, Optimality conditions in convex optimization revisited, Optimization Letters, 7 (2013), 221-229.  doi: 10.1007/s11590-011-0410-3.

[10]

Z. Ehsani and M. H. Ehsani, Effect of quality and price on customer satisfaction and commitment in Iran auto industry, International Journal of Service Science, Management and Engineering, 1 (2015), 52-59. 

[11]

C. Fornell, A national customer satisfaction barometer: The Swedish experience, Journal of Marketing, 56 (1992), 6-21. 

[12]

C. FornellM. D. JohnsonE. W. AndersonJ. Cha and B. E. Bryant, The American customer satisfaction index: nature, purpose, and findings, Journal of Marketing, 60 (1996), 7-18. 

[13]

J. B. Hirriart-Urruty, New concepts in nondifferentiable programming, Bull. Soc. Math. France, 60 (1979), 57-85. 

[14]

R. HussainA. Al Nasser and Y. K. Hussain, Service quality and customer satisfaction of a UAE-based airline: An empirical investigation, Journal of Air Transport Management, 42 (2015), 167-175. 

[15]

A. A. JahanshahiM. A. H. GashtiS. A. MirdamadiK. Nawaser and S. M. S. Khaksar, Study the effects of customer service and product quality on customer satisfaction and loyalty, International Journal of Humanities and Social Science, 1 (2011), 253-260. 

[16]

S. A. Jafari and A. M. Tehranchian, The effect of the optimal monetary and fiscal policies on major macroeconomic indexes in Iran: Av application of optimal control theory, Journal of Economic Research (Tahghighat- E-Eghtesadi), (in Persian), 39 (2004), 213-242.

[17]

M. D. Johnson and C. Fornell, A framework for comparing customer satisfaction across individuals and product categories, Journal of Economic Psychology, 12 (1991), 267-286. 

[18]

A. KabganiM. Soleimani-Damaneh and M. Zamani, Optimality conditions in optimization problems with convex feasible set using convexificators, Mathematical Methods of Operations Research, 86 (2017), 103-121.  doi: 10.1007/s00186-017-0584-2.

[19]

D. E. Kirk, Optimal Control Theory: An Introduction, New York, Dover Publications Inc, 2012.

[20]

O. V. Krivobokova, Evaluating customer satisfaction as an aspect of quality management, World Academy of Science, Engineering and Technology, 53 (2009), 565-568. 

[21]

P. Kotler and K. Keller, Dirección de Marketing (Decimocuarta ed), Naucalpan de Juárez, Pearson Education, 2012.

[22]

J. B. Lasserre, On representations of the feasible set in convex optimization, Optimization Letters, 4 (2010), 1-5.  doi: 10.1007/s11590-009-0153-6.

[23]

N. T. H. Linh and J. P. Penot, Optimality conditions for quasiconvex programs, SIAM Journal on Optimization, 17 (2006), 500-510.  doi: 10.1137/040621843.

[24]

J. E. Martínez-Legaz, Optimality conditions for pseudoconvex minimization over convex sets defined by tangentially convex constraints, Optimization Letters, 9 (2015), 1017-1023.  doi: 10.1007/s11590-014-0822-y.

[25]

S. Nair, Assessing customer satisfaction and brand awareness of branded bread, IOSR Journal of Business and Management, 12 (2013), 13-18. 

[26]

V. M. Ngo and D. Pavelková, Moderating and mediating effects of switching costs on the relationship between service value, customer satisfaction and customer loyalty: investigation of retail banking in Vietnam, Journal of International Studies, 10 (2017), 9-33. 

[27]

K. N. Pirbazari and K. Jalilian, Designing an optimal customer satisfaction model in automotive industry, Journal of Control, Automation and Electrical Systems, 31 (2020), 31-39. 

[28]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Translated by KN Trirogoff, New York, 1962.

[29]

M. RodN. J. AshillJ. Shao and J. Carruthers, An examination of the relationship between service quality dimensions, overall internet banking service quality and customer satisfaction, Marketing Intelligence and Planning, 27 (2009), 103-126. 

[30]

E. N. Saghier and D. Nathan, Service quality dimensions and customers' satisfactions of banks in Egypt, In Proceedings of 20th International Business Research Conference, 2013.

[31]

K. Srivastava and N. K. Sharma, Service quality, corporate brand image, and switching behavior: The mediating role of customer satisfaction and repurchase intention, Services Marketing Quarterly, 34 (2013), 274-291. 

[32]

A. H. Susanto, The influence of customer purchase decision on customer satisfaction and it's impact to customer loyalty, Jurnal EMBA: Jurnal Riset Ekonomi, Manajemen, Bisnis dan Akuntansi, 1 (2013), 639-658. 

[33]

D. Szwajca, Relationship between corporate image and corporate reputation in Polish banking sector, Oeconomia Copernicana, 9 (2018), 493-509. 

[34]

G. T. YeoV. V. Thai and S. Y. Roh, An analysis of port service quality and customer satisfaction: The case of Korean container ports, The Asian Journal of Shipping and Logistics, 31 (2015), 437-447. 

[35]

Y. Zhou and Z. Wang, A robust optimal trajectory tracking control for systems with an input delay, Journal of the Franklin Institute, 353 (2016), 2627-2649.  doi: 10.1016/j.jfranklin.2016.05.003.

show all references

References:
[1]

E. AlleviJ. E. Martínez-Legaz and R. Riccardi, Optimality conditions for convex problems on intersections of non necessarily convex sets, Journal of Global Optimization, 77 (2020), 143-155.  doi: 10.1007/s10898-019-00849-z.

[2]

T. W. Andreassen and B. Lindestad, Customer loyalty and complex services, International Journal of Service Industry Management, 9 (1998), 7-23. 

[3]

M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Nonlinear Programming, Wiley, New Jersey, 2006.

[4]

Y. Bilan, Sustainable development of a company: Building of new level relationship with the consumers of XXI. Century, Amfiteatru Economic, 15 (2013), 687-701. 

[5]

M. Bruhn and M. A. Grund, Development and implementation of national customer satisfaction indices: the Swiss Index of Customer Satisfaction (SWICS), Total Quality Management, 11 (2000), 1017-1028. 

[6] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, New York, 2004.  doi: 10.1017/CBO9780511804441.
[7]

N. H. ChieuV. JeyakumarG. Li and H. Mohebi, Constraint qualifications for convex optimization without convexity of constraints: New connections and applications to best approximation, European Journal of Operational Research, 265 (2018), 19-25.  doi: 10.1016/j.ejor.2017.07.038.

[8]

F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer, New York, 1998.

[9]

J. Dutta and C. S. Lalitha, Optimality conditions in convex optimization revisited, Optimization Letters, 7 (2013), 221-229.  doi: 10.1007/s11590-011-0410-3.

[10]

Z. Ehsani and M. H. Ehsani, Effect of quality and price on customer satisfaction and commitment in Iran auto industry, International Journal of Service Science, Management and Engineering, 1 (2015), 52-59. 

[11]

C. Fornell, A national customer satisfaction barometer: The Swedish experience, Journal of Marketing, 56 (1992), 6-21. 

[12]

C. FornellM. D. JohnsonE. W. AndersonJ. Cha and B. E. Bryant, The American customer satisfaction index: nature, purpose, and findings, Journal of Marketing, 60 (1996), 7-18. 

[13]

J. B. Hirriart-Urruty, New concepts in nondifferentiable programming, Bull. Soc. Math. France, 60 (1979), 57-85. 

[14]

R. HussainA. Al Nasser and Y. K. Hussain, Service quality and customer satisfaction of a UAE-based airline: An empirical investigation, Journal of Air Transport Management, 42 (2015), 167-175. 

[15]

A. A. JahanshahiM. A. H. GashtiS. A. MirdamadiK. Nawaser and S. M. S. Khaksar, Study the effects of customer service and product quality on customer satisfaction and loyalty, International Journal of Humanities and Social Science, 1 (2011), 253-260. 

[16]

S. A. Jafari and A. M. Tehranchian, The effect of the optimal monetary and fiscal policies on major macroeconomic indexes in Iran: Av application of optimal control theory, Journal of Economic Research (Tahghighat- E-Eghtesadi), (in Persian), 39 (2004), 213-242.

[17]

M. D. Johnson and C. Fornell, A framework for comparing customer satisfaction across individuals and product categories, Journal of Economic Psychology, 12 (1991), 267-286. 

[18]

A. KabganiM. Soleimani-Damaneh and M. Zamani, Optimality conditions in optimization problems with convex feasible set using convexificators, Mathematical Methods of Operations Research, 86 (2017), 103-121.  doi: 10.1007/s00186-017-0584-2.

[19]

D. E. Kirk, Optimal Control Theory: An Introduction, New York, Dover Publications Inc, 2012.

[20]

O. V. Krivobokova, Evaluating customer satisfaction as an aspect of quality management, World Academy of Science, Engineering and Technology, 53 (2009), 565-568. 

[21]

P. Kotler and K. Keller, Dirección de Marketing (Decimocuarta ed), Naucalpan de Juárez, Pearson Education, 2012.

[22]

J. B. Lasserre, On representations of the feasible set in convex optimization, Optimization Letters, 4 (2010), 1-5.  doi: 10.1007/s11590-009-0153-6.

[23]

N. T. H. Linh and J. P. Penot, Optimality conditions for quasiconvex programs, SIAM Journal on Optimization, 17 (2006), 500-510.  doi: 10.1137/040621843.

[24]

J. E. Martínez-Legaz, Optimality conditions for pseudoconvex minimization over convex sets defined by tangentially convex constraints, Optimization Letters, 9 (2015), 1017-1023.  doi: 10.1007/s11590-014-0822-y.

[25]

S. Nair, Assessing customer satisfaction and brand awareness of branded bread, IOSR Journal of Business and Management, 12 (2013), 13-18. 

[26]

V. M. Ngo and D. Pavelková, Moderating and mediating effects of switching costs on the relationship between service value, customer satisfaction and customer loyalty: investigation of retail banking in Vietnam, Journal of International Studies, 10 (2017), 9-33. 

[27]

K. N. Pirbazari and K. Jalilian, Designing an optimal customer satisfaction model in automotive industry, Journal of Control, Automation and Electrical Systems, 31 (2020), 31-39. 

[28]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Translated by KN Trirogoff, New York, 1962.

[29]

M. RodN. J. AshillJ. Shao and J. Carruthers, An examination of the relationship between service quality dimensions, overall internet banking service quality and customer satisfaction, Marketing Intelligence and Planning, 27 (2009), 103-126. 

[30]

E. N. Saghier and D. Nathan, Service quality dimensions and customers' satisfactions of banks in Egypt, In Proceedings of 20th International Business Research Conference, 2013.

[31]

K. Srivastava and N. K. Sharma, Service quality, corporate brand image, and switching behavior: The mediating role of customer satisfaction and repurchase intention, Services Marketing Quarterly, 34 (2013), 274-291. 

[32]

A. H. Susanto, The influence of customer purchase decision on customer satisfaction and it's impact to customer loyalty, Jurnal EMBA: Jurnal Riset Ekonomi, Manajemen, Bisnis dan Akuntansi, 1 (2013), 639-658. 

[33]

D. Szwajca, Relationship between corporate image and corporate reputation in Polish banking sector, Oeconomia Copernicana, 9 (2018), 493-509. 

[34]

G. T. YeoV. V. Thai and S. Y. Roh, An analysis of port service quality and customer satisfaction: The case of Korean container ports, The Asian Journal of Shipping and Logistics, 31 (2015), 437-447. 

[35]

Y. Zhou and Z. Wang, A robust optimal trajectory tracking control for systems with an input delay, Journal of the Franklin Institute, 353 (2016), 2627-2649.  doi: 10.1016/j.jfranklin.2016.05.003.

Table 1.  The parameters and variables
Parameters and description
$ X_{10} $ customer satisfaction of after-sale services in the current year
$ X_{20} $ customer satisfaction of sale process in the current year
$ X_{30} $ customer satisfaction of IQS in the current year
$ X_{40} $ customer satisfaction of APEAL in the current year
$ \bar{X}_{1}>0 $ at least customer satisfaction of after-sale services
$ \bar{X}_{2}>0 $ at least customer satisfaction of sale process
$ \bar{X}_{3}>0 $ at least customer satisfaction of IQS
$ \bar{X}_{4}>0 $ at least customer satisfaction of APEAL
$ \mu, \gamma $ parameters in the cost of increasing satisfaction function $ \mathcal{CO}(S_{0}, S_{1}) $
Variables and description
$ X_{11} $ customer satisfaction of after-sale services in the next year
$ X_{21} $ customer satisfaction of sale process in the next year
$ X_{31} $ customer satisfaction of IQS in the next year
$ X_{41} $ customer satisfaction of APEAL in the next year
Parameters and description
$ X_{10} $ customer satisfaction of after-sale services in the current year
$ X_{20} $ customer satisfaction of sale process in the current year
$ X_{30} $ customer satisfaction of IQS in the current year
$ X_{40} $ customer satisfaction of APEAL in the current year
$ \bar{X}_{1}>0 $ at least customer satisfaction of after-sale services
$ \bar{X}_{2}>0 $ at least customer satisfaction of sale process
$ \bar{X}_{3}>0 $ at least customer satisfaction of IQS
$ \bar{X}_{4}>0 $ at least customer satisfaction of APEAL
$ \mu, \gamma $ parameters in the cost of increasing satisfaction function $ \mathcal{CO}(S_{0}, S_{1}) $
Variables and description
$ X_{11} $ customer satisfaction of after-sale services in the next year
$ X_{21} $ customer satisfaction of sale process in the next year
$ X_{31} $ customer satisfaction of IQS in the next year
$ X_{41} $ customer satisfaction of APEAL in the next year
[1]

Ying Gao, Xinmin Yang, Kok Lay Teo. Optimality conditions for approximate solutions of vector optimization problems. Journal of Industrial and Management Optimization, 2011, 7 (2) : 483-496. doi: 10.3934/jimo.2011.7.483

[2]

Xiaoqing Ou, Suliman Al-Homidan, Qamrul Hasan Ansari, Jiawei Chen. Image space analysis for uncertain multiobjective optimization problems: Robust optimality conditions. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021199

[3]

Jinchuan Zhou, Changyu Wang, Naihua Xiu, Soonyi Wu. First-order optimality conditions for convex semi-infinite min-max programming with noncompact sets. Journal of Industrial and Management Optimization, 2009, 5 (4) : 851-866. doi: 10.3934/jimo.2009.5.851

[4]

Kai Li, Yuqian Pan, Bohai Liu, Bayi Cheng. The setting and optimization of quick queue with customer loss. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1539-1553. doi: 10.3934/jimo.2019016

[5]

Yong Xia. New sufficient global optimality conditions for linearly constrained bivalent quadratic optimization problems. Journal of Industrial and Management Optimization, 2009, 5 (4) : 881-892. doi: 10.3934/jimo.2009.5.881

[6]

Tadeusz Antczak, Najeeb Abdulaleem. Optimality conditions for $ E $-differentiable vector optimization problems with the multiple interval-valued objective function. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2971-2989. doi: 10.3934/jimo.2019089

[7]

Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1041-1054. doi: 10.3934/jimo.2017089

[8]

René Carmona, Kenza Hamidouche, Mathieu Laurière, Zongjun Tan. Linear-quadratic zero-sum mean-field type games: Optimality conditions and policy optimization. Journal of Dynamics and Games, 2021, 8 (4) : 403-443. doi: 10.3934/jdg.2021023

[9]

Jutamas Kerdkaew, Rabian Wangkeeree, Rattanaporn Wangkeeree. Global optimality conditions and duality theorems for robust optimal solutions of optimization problems with data uncertainty, using underestimators. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 93-107. doi: 10.3934/naco.2021053

[10]

Nazih Abderrazzak Gadhi, Fatima Zahra Rahou. Sufficient optimality conditions and Mond-Weir duality results for a fractional multiobjective optimization problem. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021216

[11]

Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial and Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789

[12]

B. Bonnard, J.-B. Caillau, E. Trélat. Second order optimality conditions with applications. Conference Publications, 2007, 2007 (Special) : 145-154. doi: 10.3934/proc.2007.2007.145

[13]

Murat Adivar, Shu-Cherng Fang. Convex optimization on mixed domains. Journal of Industrial and Management Optimization, 2012, 8 (1) : 189-227. doi: 10.3934/jimo.2012.8.189

[14]

Gaoxi Li, Zhongping Wan, Jia-wei Chen, Xiaoke Zhao. Necessary optimality condition for trilevel optimization problem. Journal of Industrial and Management Optimization, 2020, 16 (1) : 55-70. doi: 10.3934/jimo.2018140

[15]

Mansoureh Alavi Hejazi, Soghra Nobakhtian. Optimality conditions for multiobjective fractional programming, via convexificators. Journal of Industrial and Management Optimization, 2020, 16 (2) : 623-631. doi: 10.3934/jimo.2018170

[16]

Luong V. Nguyen. A note on optimality conditions for optimal exit time problems. Mathematical Control and Related Fields, 2015, 5 (2) : 291-303. doi: 10.3934/mcrf.2015.5.291

[17]

Piernicola Bettiol, Nathalie Khalil. Necessary optimality conditions for average cost minimization problems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2093-2124. doi: 10.3934/dcdsb.2019086

[18]

Geng-Hua Li, Sheng-Jie Li. Unified optimality conditions for set-valued optimizations. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1101-1116. doi: 10.3934/jimo.2018087

[19]

Adela Capătă. Optimality conditions for vector equilibrium problems and their applications. Journal of Industrial and Management Optimization, 2013, 9 (3) : 659-669. doi: 10.3934/jimo.2013.9.659

[20]

Qiu-Sheng Qiu. Optimality conditions for vector equilibrium problems with constraints. Journal of Industrial and Management Optimization, 2009, 5 (4) : 783-790. doi: 10.3934/jimo.2009.5.783

 Impact Factor: 

Metrics

  • PDF downloads (393)
  • HTML views (524)
  • Cited by (0)

Other articles
by authors

[Back to Top]