• Previous Article
    Application of the bernstein polynomials for solving the nonlinear fractional type Volterra integro-differential equation with caputo fractional derivatives
  • NACO Home
  • This Issue
  • Next Article
    Comparison between Taylor and perturbed method for Volterra integral equation of the first kind
doi: 10.3934/naco.2021020

Convex optimization without convexity of constraints on non-necessarily convex sets and its applications in customer satisfaction in automotive industry

Faculty of Mathematical Sciences, University of Guilan., Rasht, 41996-13776, Iran

* Corresponding author: Kamran Jalilian

Received  August 2020 Revised  March 2021 Published  June 2021

In the present paper, some necessary and su?cient optimality conditions for a convex optimization problem over inequality constraints are presented which are not necessarily convex and are based on convex intersection of non-necessarily convex sets. The oriented distance function and a characterization of the normal cone of the feasible set are used to obtain the optimality conditions. In the second part of the paper, a non-linear smooth optimization model for customer satisfaction in automotive industry is introduced. The results of the first part are applied to solve this problem theoretically.

Citation: Kamran Jalilian, Kameleh Nasiri Pirbazari. Convex optimization without convexity of constraints on non-necessarily convex sets and its applications in customer satisfaction in automotive industry. Numerical Algebra, Control & Optimization, doi: 10.3934/naco.2021020
References:
[1]

E. AlleviJ. E. Martínez-Legaz and R. Riccardi, Optimality conditions for convex problems on intersections of non necessarily convex sets, Journal of Global Optimization, 77 (2020), 143-155.  doi: 10.1007/s10898-019-00849-z.  Google Scholar

[2]

T. W. Andreassen and B. Lindestad, Customer loyalty and complex services, International Journal of Service Industry Management, 9 (1998), 7-23.   Google Scholar

[3]

M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Nonlinear Programming, Wiley, New Jersey, 2006.  Google Scholar

[4]

Y. Bilan, Sustainable development of a company: Building of new level relationship with the consumers of XXI. Century, Amfiteatru Economic, 15 (2013), 687-701.   Google Scholar

[5]

M. Bruhn and M. A. Grund, Development and implementation of national customer satisfaction indices: the Swiss Index of Customer Satisfaction (SWICS), Total Quality Management, 11 (2000), 1017-1028.   Google Scholar

[6] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, New York, 2004.  doi: 10.1017/CBO9780511804441.  Google Scholar
[7]

N. H. ChieuV. JeyakumarG. Li and H. Mohebi, Constraint qualifications for convex optimization without convexity of constraints: New connections and applications to best approximation, European Journal of Operational Research, 265 (2018), 19-25.  doi: 10.1016/j.ejor.2017.07.038.  Google Scholar

[8]

F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer, New York, 1998.  Google Scholar

[9]

J. Dutta and C. S. Lalitha, Optimality conditions in convex optimization revisited, Optimization Letters, 7 (2013), 221-229.  doi: 10.1007/s11590-011-0410-3.  Google Scholar

[10]

Z. Ehsani and M. H. Ehsani, Effect of quality and price on customer satisfaction and commitment in Iran auto industry, International Journal of Service Science, Management and Engineering, 1 (2015), 52-59.   Google Scholar

[11]

C. Fornell, A national customer satisfaction barometer: The Swedish experience, Journal of Marketing, 56 (1992), 6-21.   Google Scholar

[12]

C. FornellM. D. JohnsonE. W. AndersonJ. Cha and B. E. Bryant, The American customer satisfaction index: nature, purpose, and findings, Journal of Marketing, 60 (1996), 7-18.   Google Scholar

[13]

J. B. Hirriart-Urruty, New concepts in nondifferentiable programming, Bull. Soc. Math. France, 60 (1979), 57-85.   Google Scholar

[14]

R. HussainA. Al Nasser and Y. K. Hussain, Service quality and customer satisfaction of a UAE-based airline: An empirical investigation, Journal of Air Transport Management, 42 (2015), 167-175.   Google Scholar

[15]

A. A. JahanshahiM. A. H. GashtiS. A. MirdamadiK. Nawaser and S. M. S. Khaksar, Study the effects of customer service and product quality on customer satisfaction and loyalty, International Journal of Humanities and Social Science, 1 (2011), 253-260.   Google Scholar

[16]

S. A. Jafari and A. M. Tehranchian, The effect of the optimal monetary and fiscal policies on major macroeconomic indexes in Iran: Av application of optimal control theory, Journal of Economic Research (Tahghighat- E-Eghtesadi), (in Persian), 39 (2004), 213-242. Google Scholar

[17]

M. D. Johnson and C. Fornell, A framework for comparing customer satisfaction across individuals and product categories, Journal of Economic Psychology, 12 (1991), 267-286.   Google Scholar

[18]

A. KabganiM. Soleimani-Damaneh and M. Zamani, Optimality conditions in optimization problems with convex feasible set using convexificators, Mathematical Methods of Operations Research, 86 (2017), 103-121.  doi: 10.1007/s00186-017-0584-2.  Google Scholar

[19]

D. E. Kirk, Optimal Control Theory: An Introduction, New York, Dover Publications Inc, 2012. Google Scholar

[20]

O. V. Krivobokova, Evaluating customer satisfaction as an aspect of quality management, World Academy of Science, Engineering and Technology, 53 (2009), 565-568.   Google Scholar

[21]

P. Kotler and K. Keller, Dirección de Marketing (Decimocuarta ed), Naucalpan de Juárez, Pearson Education, 2012. Google Scholar

[22]

J. B. Lasserre, On representations of the feasible set in convex optimization, Optimization Letters, 4 (2010), 1-5.  doi: 10.1007/s11590-009-0153-6.  Google Scholar

[23]

N. T. H. Linh and J. P. Penot, Optimality conditions for quasiconvex programs, SIAM Journal on Optimization, 17 (2006), 500-510.  doi: 10.1137/040621843.  Google Scholar

[24]

J. E. Martínez-Legaz, Optimality conditions for pseudoconvex minimization over convex sets defined by tangentially convex constraints, Optimization Letters, 9 (2015), 1017-1023.  doi: 10.1007/s11590-014-0822-y.  Google Scholar

[25]

S. Nair, Assessing customer satisfaction and brand awareness of branded bread, IOSR Journal of Business and Management, 12 (2013), 13-18.   Google Scholar

[26]

V. M. Ngo and D. Pavelková, Moderating and mediating effects of switching costs on the relationship between service value, customer satisfaction and customer loyalty: investigation of retail banking in Vietnam, Journal of International Studies, 10 (2017), 9-33.   Google Scholar

[27]

K. N. Pirbazari and K. Jalilian, Designing an optimal customer satisfaction model in automotive industry, Journal of Control, Automation and Electrical Systems, 31 (2020), 31-39.   Google Scholar

[28]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Translated by KN Trirogoff, New York, 1962.  Google Scholar

[29]

M. RodN. J. AshillJ. Shao and J. Carruthers, An examination of the relationship between service quality dimensions, overall internet banking service quality and customer satisfaction, Marketing Intelligence and Planning, 27 (2009), 103-126.   Google Scholar

[30]

E. N. Saghier and D. Nathan, Service quality dimensions and customers' satisfactions of banks in Egypt, In Proceedings of 20th International Business Research Conference, 2013. Google Scholar

[31]

K. Srivastava and N. K. Sharma, Service quality, corporate brand image, and switching behavior: The mediating role of customer satisfaction and repurchase intention, Services Marketing Quarterly, 34 (2013), 274-291.   Google Scholar

[32]

A. H. Susanto, The influence of customer purchase decision on customer satisfaction and it's impact to customer loyalty, Jurnal EMBA: Jurnal Riset Ekonomi, Manajemen, Bisnis dan Akuntansi, 1 (2013), 639-658.   Google Scholar

[33]

D. Szwajca, Relationship between corporate image and corporate reputation in Polish banking sector, Oeconomia Copernicana, 9 (2018), 493-509.   Google Scholar

[34]

G. T. YeoV. V. Thai and S. Y. Roh, An analysis of port service quality and customer satisfaction: The case of Korean container ports, The Asian Journal of Shipping and Logistics, 31 (2015), 437-447.   Google Scholar

[35]

Y. Zhou and Z. Wang, A robust optimal trajectory tracking control for systems with an input delay, Journal of the Franklin Institute, 353 (2016), 2627-2649.  doi: 10.1016/j.jfranklin.2016.05.003.  Google Scholar

show all references

References:
[1]

E. AlleviJ. E. Martínez-Legaz and R. Riccardi, Optimality conditions for convex problems on intersections of non necessarily convex sets, Journal of Global Optimization, 77 (2020), 143-155.  doi: 10.1007/s10898-019-00849-z.  Google Scholar

[2]

T. W. Andreassen and B. Lindestad, Customer loyalty and complex services, International Journal of Service Industry Management, 9 (1998), 7-23.   Google Scholar

[3]

M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Nonlinear Programming, Wiley, New Jersey, 2006.  Google Scholar

[4]

Y. Bilan, Sustainable development of a company: Building of new level relationship with the consumers of XXI. Century, Amfiteatru Economic, 15 (2013), 687-701.   Google Scholar

[5]

M. Bruhn and M. A. Grund, Development and implementation of national customer satisfaction indices: the Swiss Index of Customer Satisfaction (SWICS), Total Quality Management, 11 (2000), 1017-1028.   Google Scholar

[6] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, New York, 2004.  doi: 10.1017/CBO9780511804441.  Google Scholar
[7]

N. H. ChieuV. JeyakumarG. Li and H. Mohebi, Constraint qualifications for convex optimization without convexity of constraints: New connections and applications to best approximation, European Journal of Operational Research, 265 (2018), 19-25.  doi: 10.1016/j.ejor.2017.07.038.  Google Scholar

[8]

F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer, New York, 1998.  Google Scholar

[9]

J. Dutta and C. S. Lalitha, Optimality conditions in convex optimization revisited, Optimization Letters, 7 (2013), 221-229.  doi: 10.1007/s11590-011-0410-3.  Google Scholar

[10]

Z. Ehsani and M. H. Ehsani, Effect of quality and price on customer satisfaction and commitment in Iran auto industry, International Journal of Service Science, Management and Engineering, 1 (2015), 52-59.   Google Scholar

[11]

C. Fornell, A national customer satisfaction barometer: The Swedish experience, Journal of Marketing, 56 (1992), 6-21.   Google Scholar

[12]

C. FornellM. D. JohnsonE. W. AndersonJ. Cha and B. E. Bryant, The American customer satisfaction index: nature, purpose, and findings, Journal of Marketing, 60 (1996), 7-18.   Google Scholar

[13]

J. B. Hirriart-Urruty, New concepts in nondifferentiable programming, Bull. Soc. Math. France, 60 (1979), 57-85.   Google Scholar

[14]

R. HussainA. Al Nasser and Y. K. Hussain, Service quality and customer satisfaction of a UAE-based airline: An empirical investigation, Journal of Air Transport Management, 42 (2015), 167-175.   Google Scholar

[15]

A. A. JahanshahiM. A. H. GashtiS. A. MirdamadiK. Nawaser and S. M. S. Khaksar, Study the effects of customer service and product quality on customer satisfaction and loyalty, International Journal of Humanities and Social Science, 1 (2011), 253-260.   Google Scholar

[16]

S. A. Jafari and A. M. Tehranchian, The effect of the optimal monetary and fiscal policies on major macroeconomic indexes in Iran: Av application of optimal control theory, Journal of Economic Research (Tahghighat- E-Eghtesadi), (in Persian), 39 (2004), 213-242. Google Scholar

[17]

M. D. Johnson and C. Fornell, A framework for comparing customer satisfaction across individuals and product categories, Journal of Economic Psychology, 12 (1991), 267-286.   Google Scholar

[18]

A. KabganiM. Soleimani-Damaneh and M. Zamani, Optimality conditions in optimization problems with convex feasible set using convexificators, Mathematical Methods of Operations Research, 86 (2017), 103-121.  doi: 10.1007/s00186-017-0584-2.  Google Scholar

[19]

D. E. Kirk, Optimal Control Theory: An Introduction, New York, Dover Publications Inc, 2012. Google Scholar

[20]

O. V. Krivobokova, Evaluating customer satisfaction as an aspect of quality management, World Academy of Science, Engineering and Technology, 53 (2009), 565-568.   Google Scholar

[21]

P. Kotler and K. Keller, Dirección de Marketing (Decimocuarta ed), Naucalpan de Juárez, Pearson Education, 2012. Google Scholar

[22]

J. B. Lasserre, On representations of the feasible set in convex optimization, Optimization Letters, 4 (2010), 1-5.  doi: 10.1007/s11590-009-0153-6.  Google Scholar

[23]

N. T. H. Linh and J. P. Penot, Optimality conditions for quasiconvex programs, SIAM Journal on Optimization, 17 (2006), 500-510.  doi: 10.1137/040621843.  Google Scholar

[24]

J. E. Martínez-Legaz, Optimality conditions for pseudoconvex minimization over convex sets defined by tangentially convex constraints, Optimization Letters, 9 (2015), 1017-1023.  doi: 10.1007/s11590-014-0822-y.  Google Scholar

[25]

S. Nair, Assessing customer satisfaction and brand awareness of branded bread, IOSR Journal of Business and Management, 12 (2013), 13-18.   Google Scholar

[26]

V. M. Ngo and D. Pavelková, Moderating and mediating effects of switching costs on the relationship between service value, customer satisfaction and customer loyalty: investigation of retail banking in Vietnam, Journal of International Studies, 10 (2017), 9-33.   Google Scholar

[27]

K. N. Pirbazari and K. Jalilian, Designing an optimal customer satisfaction model in automotive industry, Journal of Control, Automation and Electrical Systems, 31 (2020), 31-39.   Google Scholar

[28]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Translated by KN Trirogoff, New York, 1962.  Google Scholar

[29]

M. RodN. J. AshillJ. Shao and J. Carruthers, An examination of the relationship between service quality dimensions, overall internet banking service quality and customer satisfaction, Marketing Intelligence and Planning, 27 (2009), 103-126.   Google Scholar

[30]

E. N. Saghier and D. Nathan, Service quality dimensions and customers' satisfactions of banks in Egypt, In Proceedings of 20th International Business Research Conference, 2013. Google Scholar

[31]

K. Srivastava and N. K. Sharma, Service quality, corporate brand image, and switching behavior: The mediating role of customer satisfaction and repurchase intention, Services Marketing Quarterly, 34 (2013), 274-291.   Google Scholar

[32]

A. H. Susanto, The influence of customer purchase decision on customer satisfaction and it's impact to customer loyalty, Jurnal EMBA: Jurnal Riset Ekonomi, Manajemen, Bisnis dan Akuntansi, 1 (2013), 639-658.   Google Scholar

[33]

D. Szwajca, Relationship between corporate image and corporate reputation in Polish banking sector, Oeconomia Copernicana, 9 (2018), 493-509.   Google Scholar

[34]

G. T. YeoV. V. Thai and S. Y. Roh, An analysis of port service quality and customer satisfaction: The case of Korean container ports, The Asian Journal of Shipping and Logistics, 31 (2015), 437-447.   Google Scholar

[35]

Y. Zhou and Z. Wang, A robust optimal trajectory tracking control for systems with an input delay, Journal of the Franklin Institute, 353 (2016), 2627-2649.  doi: 10.1016/j.jfranklin.2016.05.003.  Google Scholar

Table 1.  The parameters and variables
Parameters and description
$ X_{10} $ customer satisfaction of after-sale services in the current year
$ X_{20} $ customer satisfaction of sale process in the current year
$ X_{30} $ customer satisfaction of IQS in the current year
$ X_{40} $ customer satisfaction of APEAL in the current year
$ \bar{X}_{1}>0 $ at least customer satisfaction of after-sale services
$ \bar{X}_{2}>0 $ at least customer satisfaction of sale process
$ \bar{X}_{3}>0 $ at least customer satisfaction of IQS
$ \bar{X}_{4}>0 $ at least customer satisfaction of APEAL
$ \mu, \gamma $ parameters in the cost of increasing satisfaction function $ \mathcal{CO}(S_{0}, S_{1}) $
Variables and description
$ X_{11} $ customer satisfaction of after-sale services in the next year
$ X_{21} $ customer satisfaction of sale process in the next year
$ X_{31} $ customer satisfaction of IQS in the next year
$ X_{41} $ customer satisfaction of APEAL in the next year
Parameters and description
$ X_{10} $ customer satisfaction of after-sale services in the current year
$ X_{20} $ customer satisfaction of sale process in the current year
$ X_{30} $ customer satisfaction of IQS in the current year
$ X_{40} $ customer satisfaction of APEAL in the current year
$ \bar{X}_{1}>0 $ at least customer satisfaction of after-sale services
$ \bar{X}_{2}>0 $ at least customer satisfaction of sale process
$ \bar{X}_{3}>0 $ at least customer satisfaction of IQS
$ \bar{X}_{4}>0 $ at least customer satisfaction of APEAL
$ \mu, \gamma $ parameters in the cost of increasing satisfaction function $ \mathcal{CO}(S_{0}, S_{1}) $
Variables and description
$ X_{11} $ customer satisfaction of after-sale services in the next year
$ X_{21} $ customer satisfaction of sale process in the next year
$ X_{31} $ customer satisfaction of IQS in the next year
$ X_{41} $ customer satisfaction of APEAL in the next year
[1]

Ying Gao, Xinmin Yang, Kok Lay Teo. Optimality conditions for approximate solutions of vector optimization problems. Journal of Industrial & Management Optimization, 2011, 7 (2) : 483-496. doi: 10.3934/jimo.2011.7.483

[2]

Jinchuan Zhou, Changyu Wang, Naihua Xiu, Soonyi Wu. First-order optimality conditions for convex semi-infinite min-max programming with noncompact sets. Journal of Industrial & Management Optimization, 2009, 5 (4) : 851-866. doi: 10.3934/jimo.2009.5.851

[3]

Kai Li, Yuqian Pan, Bohai Liu, Bayi Cheng. The setting and optimization of quick queue with customer loss. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1539-1553. doi: 10.3934/jimo.2019016

[4]

Yong Xia. New sufficient global optimality conditions for linearly constrained bivalent quadratic optimization problems. Journal of Industrial & Management Optimization, 2009, 5 (4) : 881-892. doi: 10.3934/jimo.2009.5.881

[5]

Tadeusz Antczak, Najeeb Abdulaleem. Optimality conditions for $ E $-differentiable vector optimization problems with the multiple interval-valued objective function. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2971-2989. doi: 10.3934/jimo.2019089

[6]

Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1041-1054. doi: 10.3934/jimo.2017089

[7]

Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial & Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789

[8]

B. Bonnard, J.-B. Caillau, E. Trélat. Second order optimality conditions with applications. Conference Publications, 2007, 2007 (Special) : 145-154. doi: 10.3934/proc.2007.2007.145

[9]

Murat Adivar, Shu-Cherng Fang. Convex optimization on mixed domains. Journal of Industrial & Management Optimization, 2012, 8 (1) : 189-227. doi: 10.3934/jimo.2012.8.189

[10]

Gaoxi Li, Zhongping Wan, Jia-wei Chen, Xiaoke Zhao. Necessary optimality condition for trilevel optimization problem. Journal of Industrial & Management Optimization, 2020, 16 (1) : 55-70. doi: 10.3934/jimo.2018140

[11]

Mansoureh Alavi Hejazi, Soghra Nobakhtian. Optimality conditions for multiobjective fractional programming, via convexificators. Journal of Industrial & Management Optimization, 2020, 16 (2) : 623-631. doi: 10.3934/jimo.2018170

[12]

Luong V. Nguyen. A note on optimality conditions for optimal exit time problems. Mathematical Control & Related Fields, 2015, 5 (2) : 291-303. doi: 10.3934/mcrf.2015.5.291

[13]

Piernicola Bettiol, Nathalie Khalil. Necessary optimality conditions for average cost minimization problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2093-2124. doi: 10.3934/dcdsb.2019086

[14]

Geng-Hua Li, Sheng-Jie Li. Unified optimality conditions for set-valued optimizations. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1101-1116. doi: 10.3934/jimo.2018087

[15]

Adela Capătă. Optimality conditions for vector equilibrium problems and their applications. Journal of Industrial & Management Optimization, 2013, 9 (3) : 659-669. doi: 10.3934/jimo.2013.9.659

[16]

Qiu-Sheng Qiu. Optimality conditions for vector equilibrium problems with constraints. Journal of Industrial & Management Optimization, 2009, 5 (4) : 783-790. doi: 10.3934/jimo.2009.5.783

[17]

Majid E. Abbasov. Generalized exhausters: Existence, construction, optimality conditions. Journal of Industrial & Management Optimization, 2015, 11 (1) : 217-230. doi: 10.3934/jimo.2015.11.217

[18]

Shahlar F. Maharramov. Necessary optimality conditions for switching control problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 47-55. doi: 10.3934/jimo.2010.6.47

[19]

Anulekha Dhara, Aparna Mehra. Conjugate duality for generalized convex optimization problems. Journal of Industrial & Management Optimization, 2007, 3 (3) : 415-427. doi: 10.3934/jimo.2007.3.415

[20]

Adil Bagirov, Sona Taheri, Soodabeh Asadi. A difference of convex optimization algorithm for piecewise linear regression. Journal of Industrial & Management Optimization, 2019, 15 (2) : 909-932. doi: 10.3934/jimo.2018077

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]