[1]
|
Kendall E. Atkinson, An Introduction to Numerical Analysis, 2nd Edition, Wiley Student Edition, 2012.
doi: 10.1007/978-3-642-25983-8.
|
[2]
|
D. K. Behera, A. K. Sethi and R. B. Dash, An open type mixed quadrature rule using Fejer and Gaussian quadrature rules, American International Journal of Research in Science, Technology, Engineering & Mathematics, 9 (2015), 265-268.
|
[3]
|
D. Calvetti, G. H. Golub, W. B. Gragg and L. Reichel, Computation of Gauss-Kronrod quadrature rules, Mathematics of Computation, 69 (2000), 1035-1052.
doi: 10.1090/S0025-5718-00-01174-1.
|
[4]
|
S. Conte and C. de Boor, Elementary Numerical Analysis, Mc-Graw Hill, 1980.
|
[5]
|
R. N. Das and G. Pradhan, A mixed quadrature for approximate evaluation of real and definite integrals, Int. J. Math. Educ. Sci. Technology, 27 (1996), 279-283.
|
[6]
|
R. B. Dash and D. Das, Applicaion of mixed quadrsture rules in adaptive quadrature routines, Gen. Math. Notes, 18 (2013).
|
[7]
|
J. Davis Philip and Ph ilip Rabinowitz, Methods of Numerical Integration, 2nd Edition, Academic Press, 2007.
|
[8]
|
La urie Dirk, Calculation of Gauss-Kronrod quadrature rules, Mathematics of Computation of the American Mathematical Society, 66 (1997), 1133-1145.
doi: 10.1090/S0025-5718-97-00861-2.
|
[9]
|
H. O. Hera and F. J. Smith, Error estimation in the Clenshaw-Curtis quadrature formula, The Computer Jourrnal, Ⅱ (1968), 213-219.
doi: 10.1093/comjnl/11.2.213.
|
[10]
|
M. K. Jain, S. R. K Iyenger and R. K Jain, Numerical Methods for Scientific and Engineering Computation, 4th Edition, New Age International Publisher, 2003.
|
[11]
|
A. S. Kronrod, Nodes and weights of quadrature formulas, Int. J. Math. Educ. Sci. Technology, (1965), Springer publication.
|
[12]
|
F. G. Lether, On Birkhoff-Young quadrature of analytic functions, J. Comput. Appl. Math., 2 (1976), 81-92.
doi: 10.1016/0771-050X(76)90012-7.
|
[13]
|
J. Lyness and K. Puri, The Euler-Maclaurin expansion for the simplex, Math. Comput., 27 (1996), 273-293.
doi: 10.2307/2005615.
|
[14]
|
S. K. Mohanty, A mixed quadrature rule using Clenshaw-Curtis five point rule modified by richardson extrapolatio, Journal of Ultra Scientist of Physical Sciences, 32 (2020), 6-12.
|
[15]
|
S. K. Mohanty, D. Das and R. B. Dash, Dual mixed Gaussian quadrature based adaptive scheme for analytic functions, Annals of Pure and Applied Mathematics, 22 (2020), 83-92.
|
[16]
|
S. K. Mohanty and R. B. Dash, A mixed quadrature using Birkhoff-Young rule modified by Richardson extrapolation for numerical integration of Analytic functions, Indian Journal of Mathematics and Mathematical Sciences, 6 (2010), 221-228.
|
[17]
|
S. K. Mohanty and R. B. Dash, A mixed quadrature rule for numerical integration of analytic functions, Bulletin of Pure and Applied Sciences, 27E (2008), 373-376.
|
[18]
|
M. Pal, Numerical Analysis for Scientists and Engineers, Theory and C Programs, Narosa Publishing House, 2008.
|
[19]
|
J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 3rd Edition, Springer International Edition, 2002.
doi: 10.1007/978-0-387-21738-3.
|
[20]
|
A. K. Tripathy, R. B. Dash and A. Baral, A mixed quadrature rule blending Lobatto and Gauss-Legendre 3-point rule for approximate evaluation of real definite integrals, Int. J. Computing Scienceand Mathematics, 6 (2015), 366-377.
doi: 10.1504/IJCSM.2015.071809.
|
[21]
|
G. Walter and G. Walter, Adaptive quadrature revisited, BIT Numerical Mathematics, 40 (2000), 84-109.
|