# American Institute of Mathematical Sciences

doi: 10.3934/naco.2021031
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

## A quadrature rule of Lobatto-Gaussian for numerical integration of analytic functions

 1 Department of Mathematics, B.S Degree College, Jajpur, Odisha-754296, India 2 Department of Mathematics, Ravenshaw Univerty, Cuttack, Odisha-753003, India

* Corresponding author: Sanjit Kumar Mohanty

Received  December 2020 Revised  June 2021 Early access August 2021

A novel quadrature rule is formed combining Lobatto six point transformed rule and Gauss-Legendre five point transformed rule each having precision nine. The mixed rule so formed is of precision eleven. Through asymptotic error estimation the novelty of the quadrature rule is justified. Some test integrals have been evaluated using the mixed rule and its constituents both in non-adaptive and adaptive modes. The results are found to be quite encouraging for the mixed rule which is in conformation with the theoretical prediction.

Citation: Sanjit Kumar Mohanty, Rajani Ballav Dash. A quadrature rule of Lobatto-Gaussian for numerical integration of analytic functions. Numerical Algebra, Control and Optimization, doi: 10.3934/naco.2021031
##### References:

show all references

##### References:
For the integral $I_{1}(f)$
For the integral $I_{2}(f)$
For the integral $I_{3}(f)$
For the integral $I_{4}(f)$
Error comparison for the integral $I_{1}(f)$
Error comparison for the integral $I_{2}(f)$
Error comparison for the integral $I_{3}(f)$
Error comparison for the integral $I_{4}(f)$
Values of different test integrals using Constructed mixed rule and its constituent rules
 Integrals Values obtained by different quadrature rules $I$ $L_{6}(f)$ $GL_{5}(f)$ $SR_{LG}(f)$ $I_{1}=\int_{0}^{i} e^{-z^{2}}dz$ 1.462651839829136i 1.46265166801868i 1.46265174611434181 8181818i $I_{2}=\int_{-\Pi i}^{\Pi i} sin^{2}z dz$ -131.06185554618i -130.4622662693306i -130.734806849716690 9090i $I_{3}=\int_{\sqrt{3}i}^{\sqrt{3}i} z^{10}dz$ -78.00591269679589 85i -75.29118816574913 21i -76.5251538616794804 6363i $I_{4}=\int_{1-\frac{i}{4}}^{1+\frac{i}{4}} \ln z dz$ 0.005113481780491 28i 0.005113481647007 5i 0.00511348170768194 54545454i $I_{5}=\int_{0}^{2i} \sinh z dz$ -1.41614683574858 -1.4161468372130817 -1.41614683654739910 909090909 $I_{6}=\int_{1-i}^{1+i} \cos zdz$ 1.269927830104607 31i 1.269927829123843 34i 1.26992782956964514 454545454i
 Integrals Values obtained by different quadrature rules $I$ $L_{6}(f)$ $GL_{5}(f)$ $SR_{LG}(f)$ $I_{1}=\int_{0}^{i} e^{-z^{2}}dz$ 1.462651839829136i 1.46265166801868i 1.46265174611434181 8181818i $I_{2}=\int_{-\Pi i}^{\Pi i} sin^{2}z dz$ -131.06185554618i -130.4622662693306i -130.734806849716690 9090i $I_{3}=\int_{\sqrt{3}i}^{\sqrt{3}i} z^{10}dz$ -78.00591269679589 85i -75.29118816574913 21i -76.5251538616794804 6363i $I_{4}=\int_{1-\frac{i}{4}}^{1+\frac{i}{4}} \ln z dz$ 0.005113481780491 28i 0.005113481647007 5i 0.00511348170768194 54545454i $I_{5}=\int_{0}^{2i} \sinh z dz$ -1.41614683574858 -1.4161468372130817 -1.41614683654739910 909090909 $I_{6}=\int_{1-i}^{1+i} \cos zdz$ 1.269927830104607 31i 1.269927829123843 34i 1.26992782956964514 454545454i
Absolute value of Truncation error due to constructed mixed rule and its constituent rules
 Inte grals Exact value $\mid Error\mid$ by different quadrature rules $I$ $I(f)$ $\mid EL_{6}(f)\mid$ $\mid EGL_{5}(f)\mid$ $\mid ESR_{LG}(f)\mid$ $I_{1}$ 1.462651745907182i 0.0000000939219 0.0000000778885 0.00000000020715 9818181818181 $I_{2}$ -130.7308543669184i 0.3310011792616 0.2685880975878 0.0039524827982 9090909090909 $I_{3}$ -76.52515386167948 769584i 1.4807588351164 1080416 1.2339656959303 5559584 0.00000000000000 7232203636363 $I_{4}$ 0.005113481707837 01898765i 0.0000000000726 5426101235 0.0000000000608 2951898765 0.00000000000015 507353310454545 $I_{5}$ -1.416146836547142 38 0.0000000007985 6238 0.0000000006659 3932 0.00000000000025 67290909090909 $I_{6}$ 1.269927829569471 7i 0.0000000005351 3561 0.0000000004456 2836 0.00000000000017 3444545454545
 Inte grals Exact value $\mid Error\mid$ by different quadrature rules $I$ $I(f)$ $\mid EL_{6}(f)\mid$ $\mid EGL_{5}(f)\mid$ $\mid ESR_{LG}(f)\mid$ $I_{1}$ 1.462651745907182i 0.0000000939219 0.0000000778885 0.00000000020715 9818181818181 $I_{2}$ -130.7308543669184i 0.3310011792616 0.2685880975878 0.0039524827982 9090909090909 $I_{3}$ -76.52515386167948 769584i 1.4807588351164 1080416 1.2339656959303 5559584 0.00000000000000 7232203636363 $I_{4}$ 0.005113481707837 01898765i 0.0000000000726 5426101235 0.0000000000608 2951898765 0.00000000000015 507353310454545 $I_{5}$ -1.416146836547142 38 0.0000000007985 6238 0.0000000006659 3932 0.00000000000025 67290909090909 $I_{6}$ 1.269927829569471 7i 0.0000000005351 3561 0.0000000004456 2836 0.00000000000017 3444545454545
The approximations of the same set of test integrals of Table-1 using the constructed rule $SR_{LG}(f)$ in adaptive scheme
 Integrals For the Mixed rule $SR_{GL}(f)$ Approximate value(P) No of steps required $\mid Error\mid=\mid P-I\mid$ $I_{1}=\int_{0}^{i} e^{-z^{2}}dz$ 1.46265174590728028i 01 $9.828 \times 10^{-14}$ $I_{2}=\int_{-\pi i}^{\pi i}\sin^{2}zdz$ -130.730854366917647i 11 $7.52 \times 10^{-12}$ $I_{3}=\int_{-\sqrt{3} i}^{\sqrt{3} i}z^{10}zdz$ -76.5251538616794411i 01 $0.1 \times 10^{-14}$ $I_{4}=\int_{1-\frac{i}{4}}^{1+\frac{i}{4}} \ln zdz$ 0.0051134817180783701 468i 01 $4.29 \times 10^{-17}$ $I_{5}=\int_{0}^{2i} \sinh zdz$ -1.41614683654714245 01 $6.78 \times 10^{-17}$ $I_{6}=\int_{1-i}^{1+i} \cos zdz$ 1.26992782956947226i 01 $5.615 \times 10^{-16}$
 Integrals For the Mixed rule $SR_{GL}(f)$ Approximate value(P) No of steps required $\mid Error\mid=\mid P-I\mid$ $I_{1}=\int_{0}^{i} e^{-z^{2}}dz$ 1.46265174590728028i 01 $9.828 \times 10^{-14}$ $I_{2}=\int_{-\pi i}^{\pi i}\sin^{2}zdz$ -130.730854366917647i 11 $7.52 \times 10^{-12}$ $I_{3}=\int_{-\sqrt{3} i}^{\sqrt{3} i}z^{10}zdz$ -76.5251538616794411i 01 $0.1 \times 10^{-14}$ $I_{4}=\int_{1-\frac{i}{4}}^{1+\frac{i}{4}} \ln zdz$ 0.0051134817180783701 468i 01 $4.29 \times 10^{-17}$ $I_{5}=\int_{0}^{2i} \sinh zdz$ -1.41614683654714245 01 $6.78 \times 10^{-17}$ $I_{6}=\int_{1-i}^{1+i} \cos zdz$ 1.26992782956947226i 01 $5.615 \times 10^{-16}$
The approximations of the same set of test integrals of Table-1 using the constituents rules $L_6(f)$ and $GL_5(f)$ in the adaptive quadrature routines
 Inte grals For the constituent rule $L_6(f)$ For the constituent rule $GL_5(f)$ I Approximate value(P) No of steps required $\mid Error\mid$ = $\mid P-I\mid$ Approximate value(P) No of steps required $\mid Error\mid$ = $\mid P-I\mid$ $I_{1}$ 1.46265174590737 528i 03 1.93 $\times 10^{-13}$ 1.46265174590702 026i 03 1.61 $\times 10^{-13}$ $I_{2}$ -130.730854366918 748i 19 3.48 $\times 10^{-13}$ -130.730854366916 64i 19 1.759 $\times 10^{-12}$ $I_{3}$ -76.5251538616807 84i 15 9.99 $\times 10^{-14}$ -76.5251538616783 175i 15 1.17 $\times 10^{-12}$ $I_{4}$ 0.00511348170786 116954i 01 2.41 $\times 10^{-14}$ 0.00511348170781 688564i 01 2.01 $\times 10^{-14}$ $I_{5}$ -1.41614683654714 172 03 6.57 $\times 10^{-16}$ -1.41614683654714 293 03 5.53 $\times 10^{-16}$ $I_{6}$ 1.26992782956947 28i 03 1.099 $\times 10^{-15}$ 1.26992782956898 902i 01 4.826 $\times 10^{-13}$
 Inte grals For the constituent rule $L_6(f)$ For the constituent rule $GL_5(f)$ I Approximate value(P) No of steps required $\mid Error\mid$ = $\mid P-I\mid$ Approximate value(P) No of steps required $\mid Error\mid$ = $\mid P-I\mid$ $I_{1}$ 1.46265174590737 528i 03 1.93 $\times 10^{-13}$ 1.46265174590702 026i 03 1.61 $\times 10^{-13}$ $I_{2}$ -130.730854366918 748i 19 3.48 $\times 10^{-13}$ -130.730854366916 64i 19 1.759 $\times 10^{-12}$ $I_{3}$ -76.5251538616807 84i 15 9.99 $\times 10^{-14}$ -76.5251538616783 175i 15 1.17 $\times 10^{-12}$ $I_{4}$ 0.00511348170786 116954i 01 2.41 $\times 10^{-14}$ 0.00511348170781 688564i 01 2.01 $\times 10^{-14}$ $I_{5}$ -1.41614683654714 172 03 6.57 $\times 10^{-16}$ -1.41614683654714 293 03 5.53 $\times 10^{-16}$ $I_{6}$ 1.26992782956947 28i 03 1.099 $\times 10^{-15}$ 1.26992782956898 902i 01 4.826 $\times 10^{-13}$
 [1] Andreas Asheim, Alfredo Deaño, Daan Huybrechs, Haiyong Wang. A Gaussian quadrature rule for oscillatory integrals on a bounded interval. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 883-901. doi: 10.3934/dcds.2014.34.883 [2] Kevin Kuo, Phong Luu, Duy Nguyen, Eric Perkerson, Katherine Thompson, Qing Zhang. Pairs trading: An optimal selling rule. Mathematical Control and Related Fields, 2015, 5 (3) : 489-499. doi: 10.3934/mcrf.2015.5.489 [3] Mehmet Onur Olgun, Osman Palanci, Sirma Zeynep Alparslan Gök. On the grey Baker-Thompson rule. Journal of Dynamics and Games, 2020, 7 (4) : 303-315. doi: 10.3934/jdg.2020024 [4] Piotr Jaworski, Marcin Pitera. The 20-60-20 rule. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1149-1166. doi: 10.3934/dcdsb.2016.21.1149 [5] Marco Berardi, Fabio V. Difonzo. A quadrature-based scheme for numerical solutions to Kirchhoff transformed Richards' equation. Journal of Computational Dynamics, 2022, 9 (2) : 69-84. doi: 10.3934/jcd.2022001 [6] Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems and Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 [7] Vladimir Georgiev, Koichi Taniguchi. On fractional Leibniz rule for Dirichlet Laplacian in exterior domain. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1101-1115. doi: 10.3934/dcds.2019046 [8] Regina S. Burachik, C. Yalçın Kaya. An update rule and a convergence result for a penalty function method. Journal of Industrial and Management Optimization, 2007, 3 (2) : 381-398. doi: 10.3934/jimo.2007.3.381 [9] Hoi Tin Kong, Qing Zhang. An optimal trading rule of a mean-reverting asset. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1403-1417. doi: 10.3934/dcdsb.2010.14.1403 [10] Jingzhi Tie, Qing Zhang. Switching between a pair of stocks: An optimal trading rule. Mathematical Control and Related Fields, 2018, 8 (3&4) : 965-999. doi: 10.3934/mcrf.2018042 [11] Jingzhi Tie, Qing Zhang. An optimal mean-reversion trading rule under a Markov chain model. Mathematical Control and Related Fields, 2016, 6 (3) : 467-488. doi: 10.3934/mcrf.2016012 [12] João Correia-da-Silva, Joana Pinho. The profit-sharing rule that maximizes sustainability of cartel agreements. Journal of Dynamics and Games, 2016, 3 (2) : 143-151. doi: 10.3934/jdg.2016007 [13] Ayla Sayli, Ayse Oncu Sarihan. Statistical query-based rule derivation system by backward elimination algorithm. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1341-1356. doi: 10.3934/dcdss.2015.8.1341 [14] Frederik Riis Mikkelsen. A model based rule for selecting spiking thresholds in neuron models. Mathematical Biosciences & Engineering, 2016, 13 (3) : 569-578. doi: 10.3934/mbe.2016008 [15] Sebastian J. Schreiber. The $P^*$ rule in the stochastic Holt-Lawton model of apparent competition. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374 [16] Yuanyao Ding, Zudi Lu. The optimal portfolios based on a modified safety-first rule with risk-free saving. Journal of Industrial and Management Optimization, 2016, 12 (1) : 83-102. doi: 10.3934/jimo.2016.12.83 [17] Hideaki Takagi. Extension of Littlewood's rule to the multi-period static revenue management model with standby customers. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2181-2202. doi: 10.3934/jimo.2020064 [18] Akane Kawaharada. Singular function emerging from one-dimensional elementary cellular automaton Rule 150. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2115-2128. doi: 10.3934/dcdsb.2021125 [19] Xinliang An, Avy Soffer. Fermi's golden rule and $H^1$ scattering for nonlinear Klein-Gordon equations with metastable states. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 331-373. doi: 10.3934/dcds.2020013 [20] Guojun Gan, Kun Chen. A soft subspace clustering algorithm with log-transformed distances. Big Data & Information Analytics, 2016, 1 (1) : 93-109. doi: 10.3934/bdia.2016.1.93

Impact Factor:

## Tools

Article outline

Figures and Tables