[1]
|
A. Amirteimoori, A DEA two-stage decision processes with shared resources, Central European Journal of Operations Research, 21 (2013), 141-151.
doi: 10.1007/s10100-011-0218-3.
|
[2]
|
Q. An, P. Wang, A. Emroznejad and J. Hu, Fixed cost allocationbased on the principle of efficincy invariance in two-stage systems, European Journal of Operational Research, 283 (2020), 662-675.
doi: 10.1016/j.ejor.2019.11.031.
|
[3]
|
Q. An, Y. Wen, T. Ding and Y. Li, Resource sharing and payoff allocation in a three-stage system: integrating network DEA with the Shaplley value method, Omega, 85 (2018), 16-25.
|
[4]
|
J. E. Beasley, Allocating fixed costs and resources via data envelopment analysis, European Journal of Operational Research, 147 (2003), 198-216.
doi: 10.1016/S0377-2217(02)00244-8.
|
[5]
|
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge: Cambridge University Press, 2004.
doi: 10.1017/CBO9780511804441.
|
[6]
|
A. Charnes and W. W. Cooper, Programming with linear fractional functions, Naval Research Logistics Quarterly, 9 (1962), 181-185.
doi: 10.1002/nav.3800090303.
|
[7]
|
A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, European Journal of Operational Research, 2 (1978), 429-444.
doi: 10.1016/0377-2217(78)90138-8.
|
[8]
|
C. M. Chen and M. A. Delmas, Measuring eco-inefficiency: a new frontier approach, Operations Research, 60 (2012), 1064-1079.
doi: 10.1287/opre.1120.1094.
|
[9]
|
Y. Chen, J. Du, H. D. Sherman and J. Zhu, DEA model with shared resources and efficiency decomposition, European Journal of Operational Research, 207 (2010), 339-349.
doi: 10.1016/j.ejor.2010.03.031.
|
[10]
|
L. Chen, F. Lai, Y. M. Wang, Y. Huang and F. M. Wu, A two-stage network data envelopment analysis approach for measuring and decomposing environmental efficiency, Computers and Industrial Engineering, 119 (2018), 388-403.
doi: 10.1016/j.cie.2018.04.011.
|
[11]
|
Y. Chen, W. D. Cook, N. Li and J. Zhu, Additive efficiency decomposition in two-stage DEA, European Journal of Operational Research, 196 (2009), 1170-1176.
doi: 10.1016/j.ejor.2008.05.011.
|
[12]
|
K. Chen and J. Zhu, Second order cone programming approach to two-stage network data envelopment analysis, European Journal of Operational Research, 262 (2017), 231-238.
doi: 10.1016/j.ejor.2017.03.074.
|
[13]
|
K. Chen, W. D. Cook and J. Zhu, A conic relaxation model for searching for the global optimum of network data envelopment analysis, European Journal of Operational Research, 280 (2020), 242-253.
doi: 10.1016/j.ejor.2019.07.012.
|
[14]
|
J. Chu, J. Wu, C. Chu and T. Zhang, DEA-based fixed cost allocation in two-stage systems: leader-follower and satisfaction degree bargaining game approaches, Omega, 94 (2020), ID: 102054.
doi: 10.1016/j.omega.2019.03.012.
|
[15]
|
W. D. Cook and M. Kress, Characterizing an equitable allocation of shared costs: A DEA approach, European Journal of Operational Research, 119 (1999), 652-661.
doi: 10.1016/S0377-2217(98)00337-3.
|
[16]
|
D. K. Despotis, G. Koronakos and D. Sotiros, Composition versus decomposition in two-stage newwork DEA: A reverse approach, Journal of Productivity Analysis, 45 (2014), 71-87.
|
[17]
|
T. Ding, Q. Zhu, B. Zhang and L. Liang, Centralized fixed cost allocation for generalized two-stage network DEA, INFOR: Information Systems and Operational Research, 57 (2019), 123-140.
doi: 10.1080/03155986.2017.1397897.
|
[18]
|
J. Du, W. D. Cook, L. Liang and J. Zhu, Fixed cost and resource allocation based on DEA cross-efficiency, European Journal of Operational Research, 235 (2014), 206-214.
doi: 10.1016/j.ejor.2013.10.002.
|
[19]
|
L. Fang, Centralized resource allocation based on efficiency analysis for step-by step improvement paths, Omega, 51 (2015), 24-28.
doi: 10.1016/j.omega.2014.09.003.
|
[20]
|
C. Feng, F. Chu, J. Ding, G. Bi and L. Liang, Carbon emissions abatement (cea) allocation and compensation schemes based on DEA, Omega, 53 (2015), 78-89.
doi: 10.1016/j.omega.2014.12.005.
|
[21]
|
C. Guo, F. Wei and Y. Chen, A note on second order cone programming approach to two-stage network data envelopment analysis, European Journal of Operational Research, 263 (2017), 733-735.
doi: 10.1016/j.ejor.2017.06.011.
|
[22]
|
Z. Y. Hua, Y. Bian and L. Liang, Eco-efficiency analysis of paper mills along the huai river: an extended DEA approach, Omega, 35 (2007), 578-587.
doi: 10.1016/j.omega.2005.11.001.
|
[23]
|
C. Kao and S. N. Hwang, Efficiency decomposition in two-stage data envelopment analysis: an application to non-life insurance companies in Taiwan, European Journal of Operational Research, 185 (2008), 418-429.
doi: 10.1016/j.ejor.2006.11.041.
|
[24]
|
F. Li, Q. Zhu and Z. Chen, Allocating a fixed cost across the decision making units with two-stage network structures, Omega, 83 (2019), 139-154.
doi: 10.1016/j.omega.2018.02.009.
|
[25]
|
Y. Li, M. Yang, Y. Chen, Q. Dai and L. Liang, Allocating a fixed cost based on data envelopment analysis and satisfaction degree, Omega, 41 (2013), 55-60.
doi: 10.1016/j.omega.2011.02.008.
|
[26]
|
Y. Li, F. Li, A. Emrouznejad, L. Liang and Q. Xie, Allocating the fixed cost: an approach based on data envelopment analysis and cooperative game, Annals of Operations Reaserch, 274 (2018), 373-394.
doi: 10.1007/s10479-018-2860-9.
|
[27]
|
R. Lin, Z. Chen and Z. Li, A new approach for allocating fixed costs among decision making units, Journal of Industrial and Management Optimization, 12 (2016), 211-228.
doi: 10.3934/jimo.2016.12.211.
|
[28]
|
R. Lotfi, G. W. Weber, S. M. Sajadifar and N. Mardani, Interdependent demand in the two-period newsvendor problem, Journal of Industrial and Management Optimization, 16 (2018), 117-140.
doi: 10.3934/jimo.2018143.
|
[29]
|
J. F. Nash, The bargaining problem, Econometrica; Journal of Econometric Society, 18 (1950), 155-162.
doi: 10.2307/1907266.
|
[30]
|
J. Nash, Two-person cooperative games, Econometrica: Journal of Econometric Society, 21 (1953), 128-140.
doi: 10.2307/1906951.
|
[31]
|
J. Sadeghi, M. Ghiyasi and A. Dehnokhalaji, Resource allocation and target setting based on virtual profit improvement, Numerical Algebra, Control and Optimization, 10 (2020), 127-142.
doi: 10.3934/naco.2019043.
|
[32]
|
Y. Sho, G. Bi, F. Yang and Q. Xia, Resource allocation for branch network system with considering heterogeneity based on DEA method, Central European Journal of Operations Research, 26 (2018), 1005-1025.
doi: 10.1007/s10100-018-0563-6.
|
[33]
|
J. Sun, J. Wu, L. Liang, R. Y. Zhong and G. Q. Huang, Allocation of emission permits using DEA: centralised and individual points of view, International Journal of Production Research, 52 (2014), 419-435.
|
[34]
|
K. Wang, W. Huang, J. Wu and Y. N. Liu, Efficiency measures of the Chinese commerical banking system using an additive two-stage DEA, Omega, 44 (2014), 5-20.
doi: 10.1016/j.omega.2013.09.005.
|
[35]
|
J. Wu, Q. Zhu, X. Ji, J. Chu and L. Liang, Two-stage network processes with shared resources and resources recovered from undesirable outputs, European Journal of Operational Research, 251 (2016), 182-197.
doi: 10.1016/j.ejor.2015.10.049.
|
[36]
|
G. L. Yang, Y. Y. Song, D. L. Xu and J. B. Yang, Overall efficiency and its decomposision in a two-stage network DEA model, Journal of Managment Science and Engineering, 2 (2017), 161-192.
doi: 10.1016/j.ejor.2016.08.002.
|
[37]
|
M. M. Yu, L. H. Chen and H. Bo, A fixed cost allocation based on the two-stage network data envelopment approach, Journal of Business Research, 69 (2016), 1817-1822.
|
[38]
|
Q. Zhang, D. Koutmos, K. Chen and J. Zhu, Using operational and stock analytics to measure airline perfoemance: A network DEA approach, Decision Sciences, 52 (2021), 720-748.
doi: 10.1111/deci.12363.
|
[39]
|
W. Zhu, Q. Zhang and H. Wang, Fixed costs and shared resources allocation in two-stage network DEA, Annals of Operations Research, 278 (2019), 177-194.
doi: 10.1007/s10479-017-2599-8.
|