[1]
|
R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio dependence, Journal of Theoretical Biology, 139 (1989), 311-326.
|
[2]
|
O. Bernard and S. Souissi, Qualitative behavior of stage structured populations: application to structural validation, Journal of Mathematical Biology, 37 (1998), 291-308.
doi: 10.1007/s002850050130.
|
[3]
|
J. Chattopadhyay and A. Ovide, A predator-prey model with disease in the prey, Nonlinear Analysis: Theory, Methods & Applications, 36 (1999), 747-766.
doi: 10.1016/S0362-546X(98)00126-6.
|
[4]
|
F. Chen, Z. Ma and H. Zhang, Global asymptotical stability of the positive equilibrium of the Lotka-Volterra prey-predator model incorporating a constant number of prey refuge, Nonlinear Analysis: Real World Applications, 13 (2012), 2790-2793.
doi: 10.1016/j.nonrwa.2012.04.006.
|
[5]
|
J. Cui, L. Chen and W. Wang, The effect of dispersal on population growth with stage- structure, Computers and Mathematics with Applications, 39 (2000), 91-102.
doi: 10.1016/S0898-1221(99)00316-8.
|
[6]
|
J. Cui and and Y. Takeuchi, A predator-prey system with a stage structure for the prey, Mathematical and Computer Modelling, 44 (2006), 1126-1132.
doi: 10.1016/j.mcm.2006.04.001.
|
[7]
|
F. M. D. Gulland, The impact of infectious diseases on wild animal populations: A review, Ecology of infectious diseases in natural populations, 1 (1995), 20-50.
|
[8]
|
C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, The Memoirs of the Entomological Society of Canada, 97 (1973), 5-60.
|
[9]
|
C. Li, Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate, Physica A, 427 (2005), 234-243.
doi: 10.1016/j.physa.2015.02.023.
|
[10]
|
Alfred J. Lotka, Analytical note on certain rhythmic relations in organic systems, Proceedings of the National Academy of Sciences, 6 (1920), 410-415.
doi: 10.1073/pnas.6.7.410.
|
[11]
|
R. M. May, Limit cycles in prey-predator communities, Science, 177 (1972), 900-902.
|
[12]
|
R. M. May, Stability and Complexity in Model Ecosystems, Princeton U. P., 1973.
|
[13]
|
P. Pal, M. Haque and P. Mandal, Dynamics of a predator-prey model with disease in the predator, Math. Meth. Appl. Sci., 37 (2014), 2429-2450.
doi: 10.1002/mma.2988.
|
[14]
|
S. Ruan, Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey system with discrete delays, Quart. Appl. Math., 59 (2001), 159-173.
doi: 10.1090/qam/1811101.
|
[15]
|
S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations, Dynam. Contin. Discr. Impus.Syst., 10 (2003), 863-874.
|
[16]
|
S. Ruan, On nonlinear dynamics of predator-prey models with discrete delays, Math. Model. Nat. Phenom, 4 (2009), 140-188.
doi: 10.1051/mmnp/20094207.
|
[17]
|
Th éodore Vogel, Dynamique théorique et heredité, Rend. Sem. Mat. Univ. Politec. Torino, 21 (1961), 87-98.
|
[18]
|
V. Volterra, Variations and fluctuations of the numbers of individuals in coexisting animal populations, Mem. R. Comitato Talassogr. Ital. Mem, 131 (1927).
|
[19]
|
R. Xu and S. Zhang, Modelling and analysis of a delayed predator-prey model with disease in the predator, Appl. Math. Comput., 224 (2013), 372-386.
doi: 10.1016/j.amc.2013.08.067.
|
[20]
|
X. Zhang, X. Chen and A. U. Neumann, The stage-structured predator-prey model and optimal harvesting policy, Mathematical Biosciences, 168 (2000), 201-210.
doi: 10.1016/S0025-5564(00)00033-X.
|