• Previous Article
    Modified inertial algorithm for solving mixed equilibrium problems in Hadamard spaces
  • NACO Home
  • This Issue
  • Next Article
    Convex optimization without convexity of constraints on non-necessarily convex sets and its applications in customer satisfaction in automotive industry
doi: 10.3934/naco.2021035
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Modelling and analysis of prey-predator model involving predation of mature prey using delay differential equations

1. 

Department of Mathematics, Lovely Professional University, Phagwara, Punjab -144411, INDIA

2. 

Ph.D. Scholar, Lovely Professional University, Phagwara, Punjab -144411, INDIA

* Corresponding author: Shiv Raj

This paper is handled by V. Sree Hari Rao as the guest editor

Received  December 2020 Revised  August 2021 Early access September 2021

In this paper, the modelling and analysis of prey-predator model involving predation of mature prey is done using DDE. Equilibrium points are calculated and stability analysis is performed about non-zero equilibrium point. Delay parameter destabilizes the system and triggers asymptotic stability when value of delay parameter is below the critical point. Hopf bifurcation is observed when the value of delay parameter crosses the critical point. Sensitivity analysis has also been performed to look into the effect of other parameters on the state variables. The numerical results are substantiated using MATLAB.

Citation: Pankaj Kumar, Shiv Raj. Modelling and analysis of prey-predator model involving predation of mature prey using delay differential equations. Numerical Algebra, Control & Optimization, doi: 10.3934/naco.2021035
References:
[1]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio dependence, Journal of Theoretical Biology, 139 (1989), 311-326.   Google Scholar

[2]

O. Bernard and S. Souissi, Qualitative behavior of stage structured populations: application to structural validation, Journal of Mathematical Biology, 37 (1998), 291-308.  doi: 10.1007/s002850050130.  Google Scholar

[3]

J. Chattopadhyay and A. Ovide, A predator-prey model with disease in the prey, Nonlinear Analysis: Theory, Methods & Applications, 36 (1999), 747-766.  doi: 10.1016/S0362-546X(98)00126-6.  Google Scholar

[4]

F. ChenZ. Ma and H. Zhang, Global asymptotical stability of the positive equilibrium of the Lotka-Volterra prey-predator model incorporating a constant number of prey refuge, Nonlinear Analysis: Real World Applications, 13 (2012), 2790-2793.  doi: 10.1016/j.nonrwa.2012.04.006.  Google Scholar

[5]

J. CuiL. Chen and W. Wang, The effect of dispersal on population growth with stage- structure, Computers and Mathematics with Applications, 39 (2000), 91-102.  doi: 10.1016/S0898-1221(99)00316-8.  Google Scholar

[6]

J. Cui and and Y. Takeuchi, A predator-prey system with a stage structure for the prey, Mathematical and Computer Modelling, 44 (2006), 1126-1132.  doi: 10.1016/j.mcm.2006.04.001.  Google Scholar

[7]

F. M. D. Gulland, The impact of infectious diseases on wild animal populations: A review, Ecology of infectious diseases in natural populations, 1 (1995), 20-50.   Google Scholar

[8]

C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, The Memoirs of the Entomological Society of Canada, 97 (1973), 5-60.   Google Scholar

[9]

C. Li, Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate, Physica A, 427 (2005), 234-243.  doi: 10.1016/j.physa.2015.02.023.  Google Scholar

[10]

Alfred J. Lotka, Analytical note on certain rhythmic relations in organic systems, Proceedings of the National Academy of Sciences, 6 (1920), 410-415.  doi: 10.1073/pnas.6.7.410.  Google Scholar

[11]

R. M. May, Limit cycles in prey-predator communities, Science, 177 (1972), 900-902.   Google Scholar

[12]

R. M. May, Stability and Complexity in Model Ecosystems, Princeton U. P., 1973. Google Scholar

[13]

P. PalM. Haque and P. Mandal, Dynamics of a predator-prey model with disease in the predator, Math. Meth. Appl. Sci., 37 (2014), 2429-2450.  doi: 10.1002/mma.2988.  Google Scholar

[14]

S. Ruan, Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey system with discrete delays, Quart. Appl. Math., 59 (2001), 159-173.  doi: 10.1090/qam/1811101.  Google Scholar

[15]

S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations, Dynam. Contin. Discr. Impus.Syst., 10 (2003), 863-874.   Google Scholar

[16]

S. Ruan, On nonlinear dynamics of predator-prey models with discrete delays, Math. Model. Nat. Phenom, 4 (2009), 140-188.  doi: 10.1051/mmnp/20094207.  Google Scholar

[17]

Th éodore Vogel, Dynamique théorique et heredité, Rend. Sem. Mat. Univ. Politec. Torino, 21 (1961), 87-98.   Google Scholar

[18]

V. Volterra, Variations and fluctuations of the numbers of individuals in coexisting animal populations, Mem. R. Comitato Talassogr. Ital. Mem, 131 (1927). Google Scholar

[19]

R. Xu and S. Zhang, Modelling and analysis of a delayed predator-prey model with disease in the predator, Appl. Math. Comput., 224 (2013), 372-386.  doi: 10.1016/j.amc.2013.08.067.  Google Scholar

[20]

X. ZhangX. Chen and A. U. Neumann, The stage-structured predator-prey model and optimal harvesting policy, Mathematical Biosciences, 168 (2000), 201-210.  doi: 10.1016/S0025-5564(00)00033-X.  Google Scholar

show all references

References:
[1]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio dependence, Journal of Theoretical Biology, 139 (1989), 311-326.   Google Scholar

[2]

O. Bernard and S. Souissi, Qualitative behavior of stage structured populations: application to structural validation, Journal of Mathematical Biology, 37 (1998), 291-308.  doi: 10.1007/s002850050130.  Google Scholar

[3]

J. Chattopadhyay and A. Ovide, A predator-prey model with disease in the prey, Nonlinear Analysis: Theory, Methods & Applications, 36 (1999), 747-766.  doi: 10.1016/S0362-546X(98)00126-6.  Google Scholar

[4]

F. ChenZ. Ma and H. Zhang, Global asymptotical stability of the positive equilibrium of the Lotka-Volterra prey-predator model incorporating a constant number of prey refuge, Nonlinear Analysis: Real World Applications, 13 (2012), 2790-2793.  doi: 10.1016/j.nonrwa.2012.04.006.  Google Scholar

[5]

J. CuiL. Chen and W. Wang, The effect of dispersal on population growth with stage- structure, Computers and Mathematics with Applications, 39 (2000), 91-102.  doi: 10.1016/S0898-1221(99)00316-8.  Google Scholar

[6]

J. Cui and and Y. Takeuchi, A predator-prey system with a stage structure for the prey, Mathematical and Computer Modelling, 44 (2006), 1126-1132.  doi: 10.1016/j.mcm.2006.04.001.  Google Scholar

[7]

F. M. D. Gulland, The impact of infectious diseases on wild animal populations: A review, Ecology of infectious diseases in natural populations, 1 (1995), 20-50.   Google Scholar

[8]

C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, The Memoirs of the Entomological Society of Canada, 97 (1973), 5-60.   Google Scholar

[9]

C. Li, Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate, Physica A, 427 (2005), 234-243.  doi: 10.1016/j.physa.2015.02.023.  Google Scholar

[10]

Alfred J. Lotka, Analytical note on certain rhythmic relations in organic systems, Proceedings of the National Academy of Sciences, 6 (1920), 410-415.  doi: 10.1073/pnas.6.7.410.  Google Scholar

[11]

R. M. May, Limit cycles in prey-predator communities, Science, 177 (1972), 900-902.   Google Scholar

[12]

R. M. May, Stability and Complexity in Model Ecosystems, Princeton U. P., 1973. Google Scholar

[13]

P. PalM. Haque and P. Mandal, Dynamics of a predator-prey model with disease in the predator, Math. Meth. Appl. Sci., 37 (2014), 2429-2450.  doi: 10.1002/mma.2988.  Google Scholar

[14]

S. Ruan, Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey system with discrete delays, Quart. Appl. Math., 59 (2001), 159-173.  doi: 10.1090/qam/1811101.  Google Scholar

[15]

S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations, Dynam. Contin. Discr. Impus.Syst., 10 (2003), 863-874.   Google Scholar

[16]

S. Ruan, On nonlinear dynamics of predator-prey models with discrete delays, Math. Model. Nat. Phenom, 4 (2009), 140-188.  doi: 10.1051/mmnp/20094207.  Google Scholar

[17]

Th éodore Vogel, Dynamique théorique et heredité, Rend. Sem. Mat. Univ. Politec. Torino, 21 (1961), 87-98.   Google Scholar

[18]

V. Volterra, Variations and fluctuations of the numbers of individuals in coexisting animal populations, Mem. R. Comitato Talassogr. Ital. Mem, 131 (1927). Google Scholar

[19]

R. Xu and S. Zhang, Modelling and analysis of a delayed predator-prey model with disease in the predator, Appl. Math. Comput., 224 (2013), 372-386.  doi: 10.1016/j.amc.2013.08.067.  Google Scholar

[20]

X. ZhangX. Chen and A. U. Neumann, The stage-structured predator-prey model and optimal harvesting policy, Mathematical Biosciences, 168 (2000), 201-210.  doi: 10.1016/S0025-5564(00)00033-X.  Google Scholar

Figure 1.  The equilibrium $ E^* $($ P_r^* $, $ P_d^* $) is stable in the absence of delay i.e. when $ \tau $ = 0
Figure 2.  The equilibrium $ E^* $($ P_r^* $, $ P_d^* $) is asymptotically stable when delay is less than critical value i.e. when $ \tau $ $ < $ 8.23
Figure 3.  Phase plane of equilibrium $ E^* $($ P_r^* $, $ P_d^* $) when the delay is less than critical value i.e. $ \tau $ $ < $ 8.23
Figure 4.  The equilibrium $ E^* $($ P_r^* $, $ P_d^* $) losses stability and shows Hopf-bifurcation when delay is crosses the critical value i.e. when $ \tau $ $ \geq $ 8.23
Figure 5.  Phase plane of equilibrium $ E^* $($ P_r^* $, $ P_d^* $) when the delay crosses the critical value i.e. $ \tau $ $ \geq $ 8.23
Figure 6.  Time series graph between partial changes in $ P_d $ (predator populations) for different values of the parameter $ \alpha $
Figure 7.  Time series graph between partial changes in $ P_r $ (Prey populations) for different values of the parameter $ \delta $
Table 1.  Description of the parameters of the system (1) – (2)
Parameter Discription
b Intrinsic birth rate of prey population
$ \alpha $ Intra specific competition rate among prey
$ \beta $ Inter specific competition rate
d Death rate of predator population
$ \gamma $ Inter specific competition rate
$ \delta $ Intra specific competition rate among predator
$ \tau $ Delay parameter
Parameter Discription
b Intrinsic birth rate of prey population
$ \alpha $ Intra specific competition rate among prey
$ \beta $ Inter specific competition rate
d Death rate of predator population
$ \gamma $ Inter specific competition rate
$ \delta $ Intra specific competition rate among predator
$ \tau $ Delay parameter
[1]

Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045

[2]

Ming Liu, Dongpo Hu, Fanwei Meng. Stability and bifurcation analysis in a delay-induced predator-prey model with Michaelis-Menten type predator harvesting. Discrete & Continuous Dynamical Systems - S, 2021, 14 (9) : 3197-3222. doi: 10.3934/dcdss.2020259

[3]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[4]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

[5]

Isam Al-Darabsah, Xianhua Tang, Yuan Yuan. A prey-predator model with migrations and delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 737-761. doi: 10.3934/dcdsb.2016.21.737

[6]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[7]

R. P. Gupta, Peeyush Chandra, Malay Banerjee. Dynamical complexity of a prey-predator model with nonlinear predator harvesting. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 423-443. doi: 10.3934/dcdsb.2015.20.423

[8]

Malay Banerjee, Nayana Mukherjee, Vitaly Volpert. Prey-predator model with nonlocal and global consumption in the prey dynamics. Discrete & Continuous Dynamical Systems - S, 2020, 13 (8) : 2109-2120. doi: 10.3934/dcdss.2020180

[9]

Rafael Ortega. Variations on Lyapunov's stability criterion and periodic prey-predator systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2021069

[10]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[11]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[12]

Xinfu Chen, Yuanwei Qi, Mingxin Wang. Steady states of a strongly coupled prey-predator model. Conference Publications, 2005, 2005 (Special) : 173-180. doi: 10.3934/proc.2005.2005.173

[13]

Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536

[14]

Mingxin Wang, Peter Y. H. Pang. Qualitative analysis of a diffusive variable-territory prey-predator model. Discrete & Continuous Dynamical Systems, 2009, 23 (3) : 1061-1072. doi: 10.3934/dcds.2009.23.1061

[15]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[16]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[17]

J. Gani, R. J. Swift. Prey-predator models with infected prey and predators. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5059-5066. doi: 10.3934/dcds.2013.33.5059

[18]

Tomás Caraballo, Renato Colucci, Luca Guerrini. On a predator prey model with nonlinear harvesting and distributed delay. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2703-2727. doi: 10.3934/cpaa.2018128

[19]

Wenjie Ni, Mingxin Wang. Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3409-3420. doi: 10.3934/dcdsb.2017172

[20]

Komi Messan, Yun Kang. A two patch prey-predator model with multiple foraging strategies in predator: Applications to insects. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 947-976. doi: 10.3934/dcdsb.2017048

 Impact Factor: 

Metrics

  • PDF downloads (90)
  • HTML views (70)
  • Cited by (0)

Other articles
by authors

[Back to Top]