\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Triple-hierarchical problems with variational inequality

  • * Corresponding author: Thanyarat Jitpeera

    * Corresponding author: Thanyarat Jitpeera 

The first author is supported by RMUTL

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we suggest and analyze an iterative scheme for finding the triple-hierarchical problem in a real Hilbert space. We also consider the strong convergence for the proposed method under some assumptions. Our results extend ones of Ceng et. al (2011) [2], Yao et. al (2011) [24].

    Mathematics Subject Classification: Primary: 46C05, 47H06, 47H09, 47H10, 47J20, 47J25; Secondary: 65J15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Bnouhachem, S. A. Homidan and Q. H. Ansari, An iterative method for common solutions of equilibrium problems and hierarchical fixed point problems, Fixed Point Theory Appl., (2014), Article number: 194. doi: 10.1186/1687-1812-2014-194.
    [2] L. C. CengQ. H. Ansari and J. C Yao, Iterative methods for triple hierarchical variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 151 (2011), 489-512.  doi: 10.1007/s10957-011-9882-7.
    [3] L. C. Ceng, A. Latif, Q. H. Ansari and J. C Yao, Hybrid extragradientmethod for hierarchical variational inequalities, Fixed Point Theory Appl., (2014), Article number: 222. doi: 10.1186/1687-1812-2014-222.
    [4] P. L. Combettes, A block-itrative surrogate constraint splitting method for quadratic signal recovery, IEEE Trans. Signal Process, 51 (2003, ) 1771–1782. doi: 10.1109/TSP.2003.812846.
    [5] W. Q. Deng, New viscosity method for hierarchical fixed point approach tovariational inequalities, Fixed Point Theory Appl., (2013), Article number: 219. doi: 10.1186/1687-1812-2013-219.
    [6] P. Hartman and G. Stampacchia, On some nonlinear elliptic differential functional equations, Acta Math., 115 (1966), 271-310.  doi: 10.1007/BF02392210.
    [7] S. A. Hirstoaga, Iterative selection method for common fixed point problems, J. Math. Anal. Appl., 324 (2006), 1020-1035.  doi: 10.1016/j.jmaa.2005.12.064.
    [8] H. Iiduka, Decentralized hierarchical constrained convex optimization, Optim. Engineer, 21 (2020), 181-213.  doi: 10.1007/s11081-019-09440-7.
    [9] H. Iiduka, Fixed point optimization algorithm and its application to power control in CDMA data networks, Math. Program., Ser. A, 133 (2012), 227-242.  doi: 10.1007/s10107-010-0427-x.
    [10] H. Iiduka, Iterative algorithm for solving triple-hierarchical constrained optimization problem, J. Optim. Theory Appl., 148 (2011), 580-592.  doi: 10.1007/s10957-010-9769-z.
    [11] H. Iiduka, Strong convergence for an iterative method for the triple-hierarchical constrained optimization problem, Nonlinear Anal., 71 (2009), e1292–e1297. doi: 10.1016/j.na.2009.01.133.
    [12] H. IidukaW. Takahashi and M. Toyoda, Approximation of solutions of variational inequalities for monotone mappings, Pananmer. Math. J., 14 (2004), 49-61. 
    [13] T. Jitpeera and P. Kumam, Algorithms for solving the variational inequality problem over the triple hierarchical problem, Abstract Appl. Anal., (2012), Article ID 827156. doi: 10.1155/2012/827156.
    [14] T. Jitpeera and P. Kumam, A new explicit triple hierarchical problem over the set of fixed point and generalized mixed equilibrium problem, J. Ineq. Appl., (2012), Article number: 82. doi: 10.1186/1029-242X-2012-82.
    [15] W. A. Kirk, Fixed point theorem for mappings which do not increase distance, Amer. Math. Monthly, 72 (1965), 1004-1006.  doi: 10.2307/2313345.
    [16] P. E. Maing$\acute{e}$ and A. Moudafi, Strong convergence of an iterative method for hierarchical fixed-point problems, Pacific. J. Optim., 3 (2007), 529-538. 
    [17] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 595-597.  doi: 10.1090/S0002-9904-1967-11761-0.
    [18] K. Slavakis and I. Yamada, Robust wideband beamforming by the hybrid steepest descent method, IEEE Trans. Signal Process, 55 (2007), 4511-4522.  doi: 10.1109/TSP.2007.896252.
    [19] K. SlavakisI. Yamada and K. Sakaniwa, Computation of symmetric positive definite Toeplitz matrices by the hybrid steepest descent method, Signal Process, 83 (2003), 1135-1140. 
    [20] N. Wairojjana and P. Kumam, General iterative algorithms for hierarchical fixed points approach to variational inequalities, J. Appl. Math., (2012), Article ID 174318. doi: 10.1155/2012/174318.
    [21] I. Yamada, The hybrid steepest descent method for the variational inequality problems over the intersection of fixed point sets of nonexpansive mappings, In Inherently Paralle Algorithms for Feasibllity and Optimization and Their Applications (eds. D. Butnariu, Y. Censor and S. Reich), Elsevier, Amsterdam, (2001), 473–504. doi: 10.1016/S1570-579X(01)80028-8.
    [22] I. Yamada and N. Ogura, Hybrid steepest descent method for variational inequality problem over the fixed point set of certain quasi-nonexpansive mapping, Numer. Funct. Anal. Optim., 25 (2004), 619-655.  doi: 10.1081/NFA-200045815.
    [23] I. Yamada, N. Ogura and N. Shirakawa, A numerically robust hybrid steepest descent method for the convexly constrained generalized inverse problems, in: Inverse Problems, Image Analysis, and Medical Imaging, in: Contemp. Math. (eds. Z. Nashed, O. Scherzer), Amer. Math. Soc., 313 (2002), 269–305. doi: 10.1090/conm/313/05379.
    [24] Y. Yao, Y. C. Liou and S. M. Kang, Algorithms construction for variational inequaliies, Fixed Point Theory Appl., (2011), Article number: 794203. doi: 10.1155/2011/794203.
    [25] H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (2002), 240-256.  doi: 10.1112/S0024610702003332.
  • 加载中
SHARE

Article Metrics

HTML views(939) PDF downloads(537) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return