doi: 10.3934/naco.2021039
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Modified inertial algorithm for solving mixed equilibrium problems in Hadamard spaces

1. 

Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

2. 

Department of Mathematics, The Technion-Israel Institute of Technology, 32000 Haifa, Israel

3. 

Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria, P.O. Box 60, 0204, South Africa

4. 

Department of Mathematics, University of Eswatini, Private Bag 4 Kwaluseni, Eswatini

* Corresponding author: Godwin Chidi Ugwunnadi

Received  April 2021 Revised  August 2021 Early access September 2021

The main purpose of this paper is to introduce the concept of modified inertial algorithm in Hadamard spaces. We emphasize that, as far as we know, this is the first time that this concept is being considered in this setting. Under some weak assumptions, we prove that the modified inertial algorithm converges strongly to a common solution of a finite family of mixed equilibrium problems and fixed point problem of a nonexpansive mapping. We also give a primary numerical illustration in the framework of Hadamard spaces, to show the efficiency of the modified inertial term in our proposed algorithm.

Citation: Abdul Rahim Khan, Chinedu Izuchukwu, Maggie Aphane, Godwin Chidi Ugwunnadi. Modified inertial algorithm for solving mixed equilibrium problems in Hadamard spaces. Numerical Algebra, Control & Optimization, doi: 10.3934/naco.2021039
References:
[1]

F. Alvarez and H. Attouch, An Inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), 3-11.  doi: 10.1023/A:1011253113155.  Google Scholar

[2]

M. Bač$\acute{a}$k, Convex Analysis and Optimization in Hadamard Spaces, De Gruyter Series in Nonlinear Analysis and Applications, De Gruyter, Berlin, 22 (2014). doi: 10.1515/9783110361629.  Google Scholar

[3]

M. Bač$\acute{a}$k, Old and new challenges in Hadamard spaces, 2018, arXiv: math/01355v2. Google Scholar

[4]

M. Bač$\acute{a}$k, The proximal point algorithm in metric spaces, Israel J. Math., 194 (2013), 689-701.  doi: 10.1007/s11856-012-0091-3.  Google Scholar

[5]

I. D. Berg and I. G. Nikolaev, Quasilinearization and curvature of Alexandrov spaces, Geom. Dedicata, 133 (2008), 195-218.  doi: 10.1007/s10711-008-9243-3.  Google Scholar

[6]

M. Bianchi and S. Schaible, Generalized monotone bifunctions and equilibrium problems, J. Optim Theory Appl., 90 (1996), 31-43.  doi: 10.1007/BF02192244.  Google Scholar

[7]

E. Blum and W. Oettli, From optimization and variational inequality to equilibrium problems, Math. Stud., 63 (1994) 123–145.  Google Scholar

[8]

M. Bridson and A. Haefliger, Metric Spaces of Nonpositive Curvature, Springer-Verlag, Berlin, Heidelberg, New York, 1999. doi: 10.1007/978-3-662-12494-9.  Google Scholar

[9]

P. Chaoha and A. Phon-on, A note on fixed point sets in CAT(0) spaces, J. Math. Anal. Appl., 320 (2006), 983-987.  doi: 10.1016/j.jmaa.2005.08.006.  Google Scholar

[10]

P. CholamjiakD. V. Thong and Y. J. Cho, A novel inertial projection and contraction method for solving pseudomonotone variational inequality problems, Act. Appl. Math., 169 (2020), 217-245.  doi: 10.1007/s10440-019-00297-7.  Google Scholar

[11]

V. ColaoG. LopezG. Marino and V. Martn-Marquez, Equilibrium Problems in Hadamard manifolds, J. Math. Anal. Appl., 388 (2012), 61-77.  doi: 10.1016/j.jmaa.2011.11.001.  Google Scholar

[12]

P. L. Combetes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), 117-136.   Google Scholar

[13]

S. S. Chang, J. C. Yao, C. F. Wen, L. Yang and L. J. Qin, Common zero for a finite family of monotone mappings in Hadamard spaces with applications, Mediterr. J. Math., (2018), Article number: 160. doi: 10.1007/s00009-018-1205-x.  Google Scholar

[14]

B. J. Choi and U. C. Ji, The proximal point algorithm in uniformly convex metric spaces, Commun. Korean Math. Soc., 31 (2016), 845-855.  doi: 10.4134/CKMS.c150114.  Google Scholar

[15]

H. Dehghan, C. Izuchukwu, O. T. Mewomo, D. A. Taba and G. C. Ugwunnadi, Iterative algorithm for a family of monotone inclusion problems in CAT(0) spaces, Quaest. Math., (2019), 1–24. doi: 10.2989/16073606.2019.1593255.  Google Scholar

[16]

H. Dehghan and J. Rooin, Metric projection and convergence theorems for nonexpansive mappings in Hadamard spaces, 2014, arXiv: math/1137v1. Google Scholar

[17]

S. DhompongsaW. A. Kirk and B. Sims, Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal., 64 (2006), 762-772.  doi: 10.1016/j.na.2005.09.044.  Google Scholar

[18]

S. Dhompongsa and B. Panyanak, On $\triangle$-convergence theorems in CAT(0) spaces, Comput. Math. Appl., 56 (2008), 2572-2579.  doi: 10.1016/j.camwa.2008.05.036.  Google Scholar

[19]

A. Feragen, S. Hauberg, M. Nielsen and F. Lauze, Means in spaces of tree-like shapes, in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2011, IEEE, Piscataway, NJ, (2011), 736–746. Google Scholar

[20]

A. FeragenP. LoM. de BruijneM. Nielsen and F. Lauze, Toward a theory of statistical tree-shape analysis, IEEE Trans. Pattern Anal. Mach. Intell., 35 (2013), 2008-2021.   Google Scholar

[21]

K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York, 1984.  Google Scholar

[22]

A. N. IusemG. Kassay and W. Sosa, On certain conditions for the existence of solutions of equilibrium problems, Math. Program., Ser. B, 116 (2009), 259-273.  doi: 10.1007/s10107-007-0125-5.  Google Scholar

[23]

C. IzuchukwuG. C. UgwunnadiO. T. MewomoA. R. Khan and M. Abbas, Proximal-type algorithms for split minimization problem in P-uniformly convex metric spaces, Numer. Algorithms, 82 (2019), 909-935.  doi: 10.1007/s11075-018-0633-9.  Google Scholar

[24]

C. Izuchukwu, K. O. Aremu, O. K. Oyewole and O. T. Mewomo, On mixed equilibrium problems in Hadamard spaces, J. Math., (2019), Article ID 3210649, 13 pages. doi: 10.1155/2019/3210649.  Google Scholar

[25]

C. IzuchukwuK. O. AremuA. A. Mebawondu and O. T. Mewomo, A viscosity iterative technique for equilibrium and fixed point problems in a Hadamard space, Appl. Gen. Topol., 20 (2019), 193-210.  doi: 10.4995/agt.2019.10635.  Google Scholar

[26]

A. R. KhanG. C. UgwunnadiZ. G. Makukula and M. Abbas, Strong convergence of inertial subgradient extragradient method for solving variational inequality in Banach space, Carpathian J. Math., 35 (2019), 327-338.   Google Scholar

[27]

W. A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal., 68 (2008), 3689-3696.  doi: 10.1016/j.na.2007.04.011.  Google Scholar

[28]

P. Kumam and P. Chaipunya, Equilibrium problems and proximal algorithms in Hadamard spaces, 2018, arXiv: math/10900v1.  Google Scholar

[29]

L. Leustean, A quadratic rate of asymptotic regularity for CAT(0)-spaces, J. Math. Anal. Appl., 325 (2007), 386-399.  doi: 10.1016/j.jmaa.2006.01.081.  Google Scholar

[30]

T. C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc., 60 (1976), 179-182.  doi: 10.2307/2041136.  Google Scholar

[31]

B. Martinet, R$\acute{e}$gularisation d'in$\acute{e}$quations variationnelles par approximations successives, Rev.Fran$\acute{c}$aise dnform. et de Rech. Op$\acute{e}$rationnelle, 3 (1970), 154–158.  Google Scholar

[32]

C. C. Okeke and C. Izuchukwu, A strong convergence theorem for monotone inclusion and minimization problems in complete CAT(0) spaces, Optim. Methods Softw., 34 (2019), 1168-1183.  doi: 10.1080/10556788.2018.1472259.  Google Scholar

[33]

W. Phuengrattana, N. Onjai-uea and P. Cholamjiak, Modified proximal algorithms for solving constrained minimization and fixed point problems in complete CAT(0) spaces, Mediterr. J. Math., (2018), Article Number: 97. doi: 10.1007/s00009-018-1144-6.  Google Scholar

[34]

B. T. Polyak, Some methods of speeding up the convergence of iterates methods, U.S.S.R Comput. Math. Phys., 4 (1994), 1-17.   Google Scholar

[35]

S. Ranjbar and H. Khatibzadeh, Strong and delta convergence to a zero of a monotone operator in CAT(0) spaces, Mediterr. J. Math., 14 (2017), 15 pp. doi: 10.1007/s00009-017-0885-y.  Google Scholar

[36]

S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal., 15 (1990), 537-558.  doi: 10.1016/0362-546X(90)90058-O.  Google Scholar

[37]

R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877-898.  doi: 10.1137/0314056.  Google Scholar

[38]

Y. Shehu and P. Cholamjiak, Iterative method with inertial for variational inequalities in Hilbert spaces, Calcolo, 51 (2019), Article number: 4. doi: 10.1007/s10092-018-0300-5.  Google Scholar

[39]

R. SuparatulatornP. Cholamjiak and S. Suantai, On solving the minimization problem and the fixed-point problem for nonexpansive mappings in CAT(0) spaces, Optim. Methods Softw., 32 (2017), 182-192.  doi: 10.1007/s10092-018-0300-5.  Google Scholar

[40]

R. Suparatulatorn, P. Cholamjiak and S. Suantai, Self-adaptive algorithms with inertial effects for solving the split problem of the demicontractive operators, RACSAM, 114 (2019), Article number: 40. doi: 10.1007/s13398-019-00737-x.  Google Scholar

[41]

T. Suzuki, Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl., 1 (2005), 103-123.  doi: 10.1155/fpta.2005.103.  Google Scholar

[42]

W. Takahashi and K. Zembayashi, Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, Nonlinear Anal., 70 (2009), 45-57.  doi: 10.1016/j.na.2007.11.031.  Google Scholar

[43]

J. Tang, Viscosity approximation methods for a family of nonexpansive mappings in CAT(0) spaces, Abstr. Appl. Anal., (2014), Article ID 389804, 9 pages. doi: 10.1155/2014/389804.  Google Scholar

[44]

D. V. Thong and D. V. Hieu, Weak and strong convergence theorems for variational inequality problems, Numer. Algorithms, 78 (2018), 1045-1060.  doi: 10.1007/s11075-017-0412-z.  Google Scholar

[45]

D. V. Thong and D. V. Hieu, Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems, Numer. Algorithms, 80 (2018), 1283-1307.  doi: 10.1007/s11075-018-0527-x.  Google Scholar

[46]

D. V. Thong and D. V. Hieu, New extragradient methods for solving variational inequality problems and fixed point problems, J. Fixed Point Theory Appl., (2018), Article number: 129. doi: 10.1007/s11784-018-0610-x.  Google Scholar

[47]

G. C. UgwunnadiC. Izuchukwu and O. T. Mewomo, Strong convergence theorem for monotone inclusion problem in CAT(0) spaces, Afr. Mat., 30 (2019), 151-169.  doi: 10.1007/s13370-018-0633-x.  Google Scholar

[48]

H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (2002), 240-256.  doi: 10.1112/S0024610702003332.  Google Scholar

[49]

G. Zamani Eskandani and M. Raeisi, On the zero point problem of monotone operators in Hadamard spaces, Numer. Algorithms, 80 (2019), 1155-1179.  doi: 10.1007/s11075-018-0521-3.  Google Scholar

show all references

References:
[1]

F. Alvarez and H. Attouch, An Inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), 3-11.  doi: 10.1023/A:1011253113155.  Google Scholar

[2]

M. Bač$\acute{a}$k, Convex Analysis and Optimization in Hadamard Spaces, De Gruyter Series in Nonlinear Analysis and Applications, De Gruyter, Berlin, 22 (2014). doi: 10.1515/9783110361629.  Google Scholar

[3]

M. Bač$\acute{a}$k, Old and new challenges in Hadamard spaces, 2018, arXiv: math/01355v2. Google Scholar

[4]

M. Bač$\acute{a}$k, The proximal point algorithm in metric spaces, Israel J. Math., 194 (2013), 689-701.  doi: 10.1007/s11856-012-0091-3.  Google Scholar

[5]

I. D. Berg and I. G. Nikolaev, Quasilinearization and curvature of Alexandrov spaces, Geom. Dedicata, 133 (2008), 195-218.  doi: 10.1007/s10711-008-9243-3.  Google Scholar

[6]

M. Bianchi and S. Schaible, Generalized monotone bifunctions and equilibrium problems, J. Optim Theory Appl., 90 (1996), 31-43.  doi: 10.1007/BF02192244.  Google Scholar

[7]

E. Blum and W. Oettli, From optimization and variational inequality to equilibrium problems, Math. Stud., 63 (1994) 123–145.  Google Scholar

[8]

M. Bridson and A. Haefliger, Metric Spaces of Nonpositive Curvature, Springer-Verlag, Berlin, Heidelberg, New York, 1999. doi: 10.1007/978-3-662-12494-9.  Google Scholar

[9]

P. Chaoha and A. Phon-on, A note on fixed point sets in CAT(0) spaces, J. Math. Anal. Appl., 320 (2006), 983-987.  doi: 10.1016/j.jmaa.2005.08.006.  Google Scholar

[10]

P. CholamjiakD. V. Thong and Y. J. Cho, A novel inertial projection and contraction method for solving pseudomonotone variational inequality problems, Act. Appl. Math., 169 (2020), 217-245.  doi: 10.1007/s10440-019-00297-7.  Google Scholar

[11]

V. ColaoG. LopezG. Marino and V. Martn-Marquez, Equilibrium Problems in Hadamard manifolds, J. Math. Anal. Appl., 388 (2012), 61-77.  doi: 10.1016/j.jmaa.2011.11.001.  Google Scholar

[12]

P. L. Combetes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), 117-136.   Google Scholar

[13]

S. S. Chang, J. C. Yao, C. F. Wen, L. Yang and L. J. Qin, Common zero for a finite family of monotone mappings in Hadamard spaces with applications, Mediterr. J. Math., (2018), Article number: 160. doi: 10.1007/s00009-018-1205-x.  Google Scholar

[14]

B. J. Choi and U. C. Ji, The proximal point algorithm in uniformly convex metric spaces, Commun. Korean Math. Soc., 31 (2016), 845-855.  doi: 10.4134/CKMS.c150114.  Google Scholar

[15]

H. Dehghan, C. Izuchukwu, O. T. Mewomo, D. A. Taba and G. C. Ugwunnadi, Iterative algorithm for a family of monotone inclusion problems in CAT(0) spaces, Quaest. Math., (2019), 1–24. doi: 10.2989/16073606.2019.1593255.  Google Scholar

[16]

H. Dehghan and J. Rooin, Metric projection and convergence theorems for nonexpansive mappings in Hadamard spaces, 2014, arXiv: math/1137v1. Google Scholar

[17]

S. DhompongsaW. A. Kirk and B. Sims, Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal., 64 (2006), 762-772.  doi: 10.1016/j.na.2005.09.044.  Google Scholar

[18]

S. Dhompongsa and B. Panyanak, On $\triangle$-convergence theorems in CAT(0) spaces, Comput. Math. Appl., 56 (2008), 2572-2579.  doi: 10.1016/j.camwa.2008.05.036.  Google Scholar

[19]

A. Feragen, S. Hauberg, M. Nielsen and F. Lauze, Means in spaces of tree-like shapes, in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2011, IEEE, Piscataway, NJ, (2011), 736–746. Google Scholar

[20]

A. FeragenP. LoM. de BruijneM. Nielsen and F. Lauze, Toward a theory of statistical tree-shape analysis, IEEE Trans. Pattern Anal. Mach. Intell., 35 (2013), 2008-2021.   Google Scholar

[21]

K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York, 1984.  Google Scholar

[22]

A. N. IusemG. Kassay and W. Sosa, On certain conditions for the existence of solutions of equilibrium problems, Math. Program., Ser. B, 116 (2009), 259-273.  doi: 10.1007/s10107-007-0125-5.  Google Scholar

[23]

C. IzuchukwuG. C. UgwunnadiO. T. MewomoA. R. Khan and M. Abbas, Proximal-type algorithms for split minimization problem in P-uniformly convex metric spaces, Numer. Algorithms, 82 (2019), 909-935.  doi: 10.1007/s11075-018-0633-9.  Google Scholar

[24]

C. Izuchukwu, K. O. Aremu, O. K. Oyewole and O. T. Mewomo, On mixed equilibrium problems in Hadamard spaces, J. Math., (2019), Article ID 3210649, 13 pages. doi: 10.1155/2019/3210649.  Google Scholar

[25]

C. IzuchukwuK. O. AremuA. A. Mebawondu and O. T. Mewomo, A viscosity iterative technique for equilibrium and fixed point problems in a Hadamard space, Appl. Gen. Topol., 20 (2019), 193-210.  doi: 10.4995/agt.2019.10635.  Google Scholar

[26]

A. R. KhanG. C. UgwunnadiZ. G. Makukula and M. Abbas, Strong convergence of inertial subgradient extragradient method for solving variational inequality in Banach space, Carpathian J. Math., 35 (2019), 327-338.   Google Scholar

[27]

W. A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal., 68 (2008), 3689-3696.  doi: 10.1016/j.na.2007.04.011.  Google Scholar

[28]

P. Kumam and P. Chaipunya, Equilibrium problems and proximal algorithms in Hadamard spaces, 2018, arXiv: math/10900v1.  Google Scholar

[29]

L. Leustean, A quadratic rate of asymptotic regularity for CAT(0)-spaces, J. Math. Anal. Appl., 325 (2007), 386-399.  doi: 10.1016/j.jmaa.2006.01.081.  Google Scholar

[30]

T. C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc., 60 (1976), 179-182.  doi: 10.2307/2041136.  Google Scholar

[31]

B. Martinet, R$\acute{e}$gularisation d'in$\acute{e}$quations variationnelles par approximations successives, Rev.Fran$\acute{c}$aise dnform. et de Rech. Op$\acute{e}$rationnelle, 3 (1970), 154–158.  Google Scholar

[32]

C. C. Okeke and C. Izuchukwu, A strong convergence theorem for monotone inclusion and minimization problems in complete CAT(0) spaces, Optim. Methods Softw., 34 (2019), 1168-1183.  doi: 10.1080/10556788.2018.1472259.  Google Scholar

[33]

W. Phuengrattana, N. Onjai-uea and P. Cholamjiak, Modified proximal algorithms for solving constrained minimization and fixed point problems in complete CAT(0) spaces, Mediterr. J. Math., (2018), Article Number: 97. doi: 10.1007/s00009-018-1144-6.  Google Scholar

[34]

B. T. Polyak, Some methods of speeding up the convergence of iterates methods, U.S.S.R Comput. Math. Phys., 4 (1994), 1-17.   Google Scholar

[35]

S. Ranjbar and H. Khatibzadeh, Strong and delta convergence to a zero of a monotone operator in CAT(0) spaces, Mediterr. J. Math., 14 (2017), 15 pp. doi: 10.1007/s00009-017-0885-y.  Google Scholar

[36]

S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal., 15 (1990), 537-558.  doi: 10.1016/0362-546X(90)90058-O.  Google Scholar

[37]

R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877-898.  doi: 10.1137/0314056.  Google Scholar

[38]

Y. Shehu and P. Cholamjiak, Iterative method with inertial for variational inequalities in Hilbert spaces, Calcolo, 51 (2019), Article number: 4. doi: 10.1007/s10092-018-0300-5.  Google Scholar

[39]

R. SuparatulatornP. Cholamjiak and S. Suantai, On solving the minimization problem and the fixed-point problem for nonexpansive mappings in CAT(0) spaces, Optim. Methods Softw., 32 (2017), 182-192.  doi: 10.1007/s10092-018-0300-5.  Google Scholar

[40]

R. Suparatulatorn, P. Cholamjiak and S. Suantai, Self-adaptive algorithms with inertial effects for solving the split problem of the demicontractive operators, RACSAM, 114 (2019), Article number: 40. doi: 10.1007/s13398-019-00737-x.  Google Scholar

[41]

T. Suzuki, Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl., 1 (2005), 103-123.  doi: 10.1155/fpta.2005.103.  Google Scholar

[42]

W. Takahashi and K. Zembayashi, Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, Nonlinear Anal., 70 (2009), 45-57.  doi: 10.1016/j.na.2007.11.031.  Google Scholar

[43]

J. Tang, Viscosity approximation methods for a family of nonexpansive mappings in CAT(0) spaces, Abstr. Appl. Anal., (2014), Article ID 389804, 9 pages. doi: 10.1155/2014/389804.  Google Scholar

[44]

D. V. Thong and D. V. Hieu, Weak and strong convergence theorems for variational inequality problems, Numer. Algorithms, 78 (2018), 1045-1060.  doi: 10.1007/s11075-017-0412-z.  Google Scholar

[45]

D. V. Thong and D. V. Hieu, Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems, Numer. Algorithms, 80 (2018), 1283-1307.  doi: 10.1007/s11075-018-0527-x.  Google Scholar

[46]

D. V. Thong and D. V. Hieu, New extragradient methods for solving variational inequality problems and fixed point problems, J. Fixed Point Theory Appl., (2018), Article number: 129. doi: 10.1007/s11784-018-0610-x.  Google Scholar

[47]

G. C. UgwunnadiC. Izuchukwu and O. T. Mewomo, Strong convergence theorem for monotone inclusion problem in CAT(0) spaces, Afr. Mat., 30 (2019), 151-169.  doi: 10.1007/s13370-018-0633-x.  Google Scholar

[48]

H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (2002), 240-256.  doi: 10.1112/S0024610702003332.  Google Scholar

[49]

G. Zamani Eskandani and M. Raeisi, On the zero point problem of monotone operators in Hadamard spaces, Numer. Algorithms, 80 (2019), 1155-1179.  doi: 10.1007/s11075-018-0521-3.  Google Scholar

Figure 1.  Errors vs Iteration numbers(n): Case 1 (top left); Case 2 (top right); Case 3 (bottom left); Case 4 (bottom right)
[1]

Naoufel Ben Abdallah, Irene M. Gamba, Giuseppe Toscani. On the minimization problem of sub-linear convex functionals. Kinetic & Related Models, 2011, 4 (4) : 857-871. doi: 10.3934/krm.2011.4.857

[2]

Boumediene Abdellaoui, Abdelrazek Dieb, Enrico Valdinoci. A nonlocal concave-convex problem with nonlocal mixed boundary data. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1103-1120. doi: 10.3934/cpaa.2018053

[3]

Lauri Oksanen. Solving an inverse problem for the wave equation by using a minimization algorithm and time-reversed measurements. Inverse Problems & Imaging, 2011, 5 (3) : 731-744. doi: 10.3934/ipi.2011.5.731

[4]

Sanming Liu, Zhijie Wang, Chongyang Liu. Proximal iterative Gaussian smoothing algorithm for a class of nonsmooth convex minimization problems. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 79-89. doi: 10.3934/naco.2015.5.79

[5]

Grace Nnennaya Ogwo, Chinedu Izuchukwu, Oluwatosin Temitope Mewomo. A modified extragradient algorithm for a certain class of split pseudo-monotone variational inequality problem. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021011

[6]

Ouayl Chadli, Gayatri Pany, Ram N. Mohapatra. Existence and iterative approximation method for solving mixed equilibrium problem under generalized monotonicity in Banach spaces. Numerical Algebra, Control & Optimization, 2020, 10 (1) : 75-92. doi: 10.3934/naco.2019034

[7]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, 2021, 15 (2) : 315-338. doi: 10.3934/ipi.2020070

[8]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066

[9]

Yu-Lin Chang, Jein-Shan Chen, Jia Wu. Proximal point algorithm for nonlinear complementarity problem based on the generalized Fischer-Burmeister merit function. Journal of Industrial & Management Optimization, 2013, 9 (1) : 153-169. doi: 10.3934/jimo.2013.9.153

[10]

Yazheng Dang, Jie Sun, Honglei Xu. Inertial accelerated algorithms for solving a split feasibility problem. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1383-1394. doi: 10.3934/jimo.2016078

[11]

M. Zuhair Nashed, Alexandru Tamasan. Structural stability in a minimization problem and applications to conductivity imaging. Inverse Problems & Imaging, 2011, 5 (1) : 219-236. doi: 10.3934/ipi.2011.5.219

[12]

T. W. Leung, Chi Kin Chan, Marvin D. Troutt. A mixed simulated annealing-genetic algorithm approach to the multi-buyer multi-item joint replenishment problem: advantages of meta-heuristics. Journal of Industrial & Management Optimization, 2008, 4 (1) : 53-66. doi: 10.3934/jimo.2008.4.53

[13]

Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063

[14]

Meijuan Shang, Yanan Liu, Lingchen Kong, Xianchao Xiu, Ying Yang. Nonconvex mixed matrix minimization. Mathematical Foundations of Computing, 2019, 2 (2) : 107-126. doi: 10.3934/mfc.2019009

[15]

Nguyen Thi Bach Kim, Nguyen Canh Nam, Le Quang Thuy. An outcome space algorithm for minimizing the product of two convex functions over a convex set. Journal of Industrial & Management Optimization, 2013, 9 (1) : 243-253. doi: 10.3934/jimo.2013.9.243

[16]

Ali Fuat Alkaya, Dindar Oz. An optimal algorithm for the obstacle neutralization problem. Journal of Industrial & Management Optimization, 2017, 13 (2) : 835-856. doi: 10.3934/jimo.2016049

[17]

Fan Yuan, Dachuan Xu, Donglei Du, Min Li. An exact algorithm for stable instances of the $ k $-means problem with penalties in fixed-dimensional Euclidean space. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021122

[18]

Peiyu Li. Solving normalized stationary points of a class of equilibrium problem with equilibrium constraints. Journal of Industrial & Management Optimization, 2018, 14 (2) : 637-646. doi: 10.3934/jimo.2017065

[19]

Liping Zhang, Soon-Yi Wu, Shu-Cherng Fang. Convergence and error bound of a D-gap function based Newton-type algorithm for equilibrium problems. Journal of Industrial & Management Optimization, 2010, 6 (2) : 333-346. doi: 10.3934/jimo.2010.6.333

[20]

Michel C. Delfour. Hadamard Semidifferential, Oriented Distance Function, and some Applications. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021076

 Impact Factor: 

Metrics

  • PDF downloads (80)
  • HTML views (141)
  • Cited by (0)

[Back to Top]