We showcase applications of nonlinear algebra in the sciences and engineering. Our review is organized into eight themes: polynomial optimization, partial differential equations, algebraic statistics, integrable systems, configuration spaces of frameworks, biochemical reaction networks, algebraic vision, and tensor decompositions. Conversely, developments on these topics inspire new questions and algorithms for algebraic geometry.
Citation: |
Figure 1. Staged tree [78] modeling the discrete statistical experiment of flipping a biased coin twice.
Figure 2. Left: Trott curve. Right: The wave derived from the Trott curve whose parameters are (13) at t = 0 [11]
Figure 4. Configuration space of a rhombus in the plane. Left: Placements of the graph in the plane with the bottom two vertices fixed in place and the top two vertices free to move. Right: Projection of the configuration space onto a random three-dimensional subspace. The marked points on the right correspond to blue colored placements on the left, giving two ways to visualize the same data. There are only three singular points since four of the apparent intersections are artifacts of our 2d drawing of a 3d image
Figure 5. The left and right images are color-coded to match. Left: We project $ 401 $ points $ p^{(i)} \in \mathcal{C} $ onto a random two-dimensional subspace of $ \mathbb{R}^{16}. $ $ 200 $ orange $ \to $ red points approach the singular point $ p^{(i)} \to p^\star $ along one branch of the cusp, and another $ 200 $ light-blue $ \to $ blue points $ p^{(j)} \to p^\star $ approach along the other branch. Right: We view each point $ p^{(i)} $ as a placement map $ p^{(i)}:V \to \mathbb{R}^2 $ sending eleven vertices to the plane, rather than as points $ p^{(i)} \in \mathbb{R}^{16}. $ Vertices $ 1,6, $ and $ 11 $ are pinned and immobile. Right Top: Singular placement $ p^\star. $ Right Middle: $ 200 $ light-blue $ \to $ blue placements $ p^{(i)} \to p^\star $ moving toward the singular placement $ p^\star $ along one branch of the cusp. Right Bottom: $ 200 $ orange $ \to $ red placements moving toward the singular placement $ p^\star $ along the other branch
Figure 6. Three rigid bars in black, two elastic cables in green. Left: The elastic framework in a stable configuration. Right: Configuration of the framework after crossing the catastrophe discriminant, depicted in red. The three square vertices are pinned, the cross vertex is controlled, and the two circular vertices are free: their position is found by minimizing energy over the configuration space, which is visualized by the grey, dashed coupler curve. Bottom: the energy function along the coupler curve with the current position depicted in green.
Figure 7. A pinhole camera with principal point equal to $ (0, \, 0, \, 1) \in H $ and focal length $ 1. $ The point $ (x,y,z) $ is projected onto the plane $ H. $ The resulting image is the point $ (x/z,y/z,1). $ The dashed line corresponds to the point in $ \mathbb{P}_{\mathbb R}^2 $ which is represented in homogeneous coordinates by $ [x:y:z]$
[1] | S. Abenda and P. G. Grinevich, Reducible M-curves for Le-networks in the totally-nonnegative Grassmannian and KP-II multiline soliton, Selecta Math., 25 (2019), 1-64. doi: 10.1007/s00029-019-0488-5. |
[2] | M. J. Ablowitz, Line soliton interactions, Available at: https://sites.google.com/site/ablowitz/line-solitons. |
[3] | M. J. Ablowitz and D. E. Baldwin, Nonlinear shallow ocean-wave soliton interactions on flat beaches, Phys. Rev. E (3), 86 (2012), 036305. |
[4] | M. F. Adamer, A. L. Lőrincz, A.-L. Sattelberger and B. Sturmfels, Algebraic analysis of rotation data, Algebraic Statistics, 11 (2020), 189-211. doi: 10.2140/astat.2020.11.189. |
[5] | M. Adler and J. Moser, On a class of polynomials connected with the Korteweg-de Vries equation, Comm. Math. Phys., 61 (1978), 1-30. |
[6] | S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. M. Seitz and R. Szeliski, Building Rome in a day, Communications of the ACM, 54 (2011), 105-112. |
[7] | S. Agarwal, A. Pryhuber, R. Sinn and R. R. Thomas, The chiral domain of a camera arrangement, arXiv: 2003.09265, 2020. |
[8] | D. Agostini and C. Améndola, Discrete Gaussian distributions via theta functions, SIAGA, 2 (2019), 1-30. doi: 10.1137/18M1164937. |
[9] | D. Agostini, T. Ö. Çelik and D. Eken, Numerical reconstruction of curves from their Jacobians, arXiv: 2103.03138, 2021. |
[10] | D. Agostini, T. Ö. Çelik, J. Struwe and B. Sturmfels, Theta surfaces, Vietnam J. Math., 2020. doi: 10.1007/s10013-020-00443-x. |
[11] | D. Agostini, T. Ö. Çelik and B. Sturmfels, The Dubrovin threefold of an algebraic curve, arXiv: 2005.08244, 2020. To appear in Nonlinearity. doi: 10.1088/1361-6544/abf08c. |
[12] | D. Agostini and L. Chua, Computing theta functions with Julia, J. Softw. Algebra Geom., 11 (2021), 41-51. doi: 10.2140/jsag.2021.11.41. |
[13] | D. Agostini, C. Fevola, Y. Mandelshtam and B. Sturmfels, KP solitons from tropical limits, arXiv: 2101.10392, 2021. |
[14] | C. Aholt and L. Oeding, The ideal of the trifocal variety, Math. Comp., 83 (2014), 2553-2574. doi: 10.1090/S0025-5718-2014-02842-1. |
[15] | C. Aholt, B. Sturmfels and R. Thomas, A Hilbert scheme in computer vision, Canad. J. Math., 65 (2013), 961-988. doi: 10.4153/CJM-2012-023-2. |
[16] | R. Ait El Manssour and A.-L. Sattelberger, Combinatorial differential algebra of $x^p$, arXiv: 2102.03182, 2021. |
[17] | E. S. Allman, S. Petrović, J. A. Rhodes and S. Sullivant, Identifiability of two-tree mixtures for group-based models, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8 (2010), 710-722. |
[18] | C. Améndola, L. D. García-Puente, R. Homs, O. Kuznetsova and H. J. Motwani, Computing maximum likelihood estimates for Gaussian graphical models with Macaulay2, arXiv: 2012.11572, 2020. |
[19] | C. Améndola, K. Kohn, P. Reichenbach and A. Seigal, Invariant theory and scaling algorithms for maximum likelihood estimation, SIAM Journal on Applied Algebra and Geometry, 5 (2021), 304-337. doi: 10.1137/20M1328932. |
[20] | E. Angelini, On complex and real identifiability of tensors, Rivista di Matematica della Universita di Parma, 8 (2017), 367-377. |
[21] | S. Aoki, H. Hara and A. Takemura, Markov Bases in Algebraic Statistics, Volume 199, Springer Science & Business Media, 2012. doi: 10.1007/978-1-4614-3719-2. |
[22] | F. Arrigoni, B. Rossi and A. Fusiello, Spectral synchronization of multiple views in SE (3), SIAM Journal on Imaging Sciences, 9 (2016), 1963-1990. doi: 10.1137/16M1060248. |
[23] | D. J. Bates, J. D. Hauenstein, A. J. Sommese and C. W. Wampler, Bertini: Software for Numerical Algebraic Geometry, Available at bertini.nd.edu with permanent doi: dx.doi.org/10.7274/R0H41PB5. |
[24] | E. D. Belokolos, A. I. Bobenko, V. Z. Enolskii, A. R. Its and V. B. Matveev, Algebro-Geometric Approach to Non- Linear Integrable Equations, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1994. |
[25] | C. Beltrán, P. Breiding and N. Vannieuwenhoven, Pencil-based algorithms for tensor rank decomposition are not stable, SIAM J. Matrix Anal. Appl., 40 (2019), 02. doi: 10.1137/18M1200531. |
[26] | A. Bernardi, C. De Lazzari and F. Gesmundo, Dimension of tensor network varieties, arXiv: 2101.03148, 2021. |
[27] | D. I. Bernstein and S. Sullivant, Unimodular binary hierarchical models, J. Combin. Theory Ser. A, 123 (2017), 97-125. doi: 10.1016/j.jctb.2016.11.003. |
[28] | J. Bezanson, A. Edelman, S. Karpinski and V. B. Shah, Julia: A fresh approach to numerical computing, SIAM Review, 59 (2017), 65-98. doi: 10.1137/141000671. |
[29] | F. Bihan, A. Dickenstein and M. Giaroli, Lower bounds for positive roots and regions of multistationarity in chemical reaction networks, J. Algebra, 542 (2020), 367-411. doi: 10.1016/j.jalgebra.2019.10.002. |
[30] | J.-E. Björk, Analytic ${\mathcal{D}}$-Modules and Applications, Volume 247 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1993. doi: 10.1007/978-94-017-0717-6. |
[31] | G. Blekherman, P. Parrilo and R. Thomas, Semidefinite Optimization and Convex Algebraic Geometry, Society for Industrial and Applied Mathematics, 2012. |
[32] | T. Boege, J. I. Coons, C. Eur, A. Maraj and F. Röttger, Reciprocal maximum likelihood degrees of Brownian motion tree models, arXiv: 2009.11849, 2020. |
[33] | W. Bosma, J. Cannon and C. Playoust, The Magma algebra system, I. The user language, J. Symbolic Comput., 24 (1997), 235-265. doi: 10.1006/jsco.1996.0125. |
[34] | P. Breiding and S. Timme, Homotopy continuation, jl: A package for homotopy continuation in Julia, In Mathematical Software – ICMS 2018, Springer International Publishing, (2018), 458–465. |
[35] | N. Bruin, J. Sijsling and A. Zotine, Numerical computation of endomorphism rings of Jacobians, In 13th Algorithmic Number Theory Symposium, volume 2 of Open Book Series, (2019), 155–171. |
[36] | C. Bruschek, H. Mourtada and J. Schepers, Arc spaces and Rogers–Ramanujan identities, Ramanujan J., 30 (2013), 9-38. doi: 10.1007/s11139-012-9401-y. |
[37] | V. Buchstaber, V. Enolski and D. Leykin, Rational analogs of abelian functions, Funct. Anal. Appl., 33 (1999), 83-94. doi: 10.1007/BF02465189. |
[38] | N. Budur, Bernstein–Sato ideals and local systems, Ann. Inst. Fourier (Grenoble), 65 (2015), 549-603. |
[39] | N. Budur, M. Mustaţǎ and Z. Teitler, The monodromy conjecture for hyperplane arrangements, Geom. Dedicata, 153 (2011), 131-137. doi: 10.1007/s10711-010-9560-1. |
[40] | N. Budur, R. van der Veer, L. Wu and P. Zhou, Zero loci of Bernstein–Sato ideals, arXiv: 1907.04010, 2019. To appear in Invent. Math. doi: 10.1007/s00222-020-01025-x. |
[41] | B. F. Caviness and J. R. Johnson, Quantifier Elimination And Cylindrical Algebraic Decomposition, Springer Science & Business Media, 2012. |
[42] | T. Ö. Çelik, Thomae-Weber formula: Algebraic computations of theta constants, Int. Math. Res. Not. IMRN, rnz302. |
[43] | T. Ö. Çelik, A. Jamneshan, G. Montúfar, B. Sturmfels and L. Venturello, Wasserstein distance to independence models, J. Symbolic Comput., 104 (2021), 855-873. doi: 10.1016/j.jsc.2020.10.005. |
[44] | T. Ö. Çelik, A. Jamneshan, G. Montúfar, B. Sturmfels and L. Venturello, Optimal transport to a variety, Mathematical Aspects of Computer and Information Sciences, Springer Lecture Notes in Computer Science, 11989 (2020), 364-381. doi: 10.1007/s00454-021-00322-3. |
[45] | C. Chen, J. H. Davenport, M. Moreno Maza, B. Xia and R. Xiao, Computing with semi-algebraic sets represented by triangular decomposition, In Proceedings of the 2011 International Symposium on Symbolic and Algebraic Computation (ISSAC 2011), ACM Press, (2011), 75–82. doi: 10.1145/1993886.1993903. |
[46] | T. Chen, T.-L. Lee and T.-Y. Li, Hom4PS-3: A Parallel Numerical Solver for Systems of Polynomial Equations Based on Polyhedral Homotopy Continuation Methods, In Mathematical Software – ICMS 2014 (eds. H. Hong and C. Yap), Springer Berlin Heidelberg, (2014), 183–190. doi: 10.1007/978-3-662-44199-2_30. |
[47] | L. Chiantini, G. Ottaviani and N. Vannieuwenhoven, On generic identifiability of symmetric tensors of subgeneric rank, Trans. Amer. Math. Soc., 369 (2017), 4021-4042. doi: 10.1090/tran/6762. |
[48] | Y. Cid-Ruiz and B. Sturmfels, Primary decomposition with differential operators, arXiv: 2101.03643, 2021. |
[49] | D. Cifuentes, T. Kahle and P. Parrilo, Sums of squares in Macaulay2, J. Softw. Algebra Geom., 10 (2020), 17-24. doi: 10.2140/jsag.2020.10.17. |
[50] | G. E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decompostion, in Automata Theory and Formal Languages, Springer, (1975), 134–183. |
[51] | R. Connelly, Generic global rigidity, Discrete Comput. Geom., 33 (2005), 549-563. doi: 10.1007/s00454-004-1124-4. |
[52] | R. Connelly and H. Servatius, Higher-order rigidity—what is the proper definition?, Discrete Comput. Geom., 11 (1994), 193-200. doi: 10.1007/BF02574003. |
[53] | C. Conradi, E. Feliu, M. Mincheva and C. Wiuf, Identifying parameter regions for multistationarity, PLoS Comput. Biol., 13 (2017), e1005751. |
[54] | C. Conradi, D. Flockerzi, J. Raisch and J. Stelling, Subnetwork analysis reveals dynamic features of complex (bio)chemical networks, Proc. Nat. Acad. Sci. USA, 104 (2007), 19175-19180. |
[55] | C. Conradi, M. Mincheva and A. Shiu, Emergence of oscillations in a mixed-mechanism phosphorylation system, Bull. Math. Biol., 81 (2019), 1829-1852. doi: 10.1007/s11538-019-00580-6. |
[56] | J. I. Coons, J. Cummings, B. Hollering and A. Maraj, Generalized cut polytopes for binary hierarchical models, arXiv: 2008.00043, 2020. |
[57] | J. I. Coons and S. Sullivant, Quasi-independence models with rational maximum likelihood estimator, J. Symbolic Comput., 104 (2021), 917-941. doi: 10.1016/j.jsc.2020.10.006. |
[58] | J. I. Coons and S. Sullivant, Toric geometry of the Cavender-Farris-Neyman model with a molecular clock, Adv. in Appl. Math, 123 (2021), 102119. doi: 10.1016/j.aam.2020.102119. |
[59] | S. C. Coutinho, A Primer of Algebraic $D$-Modules, Volume 33 of Student Texts, London Mathematical Society, 1995. doi: 10.1017/CBO9780511623653. |
[60] | D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Undergraduate Texts in Mathematics. Springer New York, 4th edition, 2007. doi: 10.1007/978-0-387-35651-8. |
[61] | G. Craciun, J. W. Helton and R. J. Williams, Homotopy methods for counting reaction network equilibria, Math. Biosci, 216 (2008), 140-149. doi: 10.1016/j.mbs.2008.09.001. |
[62] | L. De Lathauwer, Blind separation of exponential polynomials and the decomposition of a tensor in rank-$(L_r, L_r, 1)$ terms, SIAM J. Matrix Anal. Appl., 32 (2011), 1451-1474. doi: 10.1137/100805510. |
[63] | J. A. De Loera, J. Rambau and F. Santos, Triangulations, Volume 25 of Algorithms and Computations in Mathematics, Springer-Verlag Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-12971-1. |
[64] | W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 4-1-3 —A computer algebra system for polynomial computations, http://www.singular.uni-kl.de, 2020. |
[65] | B. Deconinck, M. Heil, A. Bobenko, M. van Hoeij and M. Schmies, Computing Riemann theta functions, Math. Comp., 73 (2004), 1417-1442. doi: 10.1090/S0025-5718-03-01609-0. |
[66] | M. Demazure, Sur deux problemes de reconstruction, Technical Report RR-0882, INRIA, July 1988, Available at: https://hal.inria.fr/inria-00075672. |
[67] | H. Derksen, V. Makam and M. Walter, Maximum likelihood estimation for tensor normal models via castling transforms, arXiv: 2011.03849, 2020. |
[68] | P. Diaconis, B. Sturmfels and et al, Algebraic algorithms for sampling from conditional distributions, Ann. Statist., 26 (1998), 363-397. doi: 10.1214/aos/1030563990. |
[69] | A. Dickenstein, M. P. Millan, A. Shiu and X. Tang, Multistationarity in structured reaction networks, Bull. Math. Biol., 81 (2019), 1527-1581. doi: 10.1007/s11538-019-00572-6. |
[70] | V. Dolotin and A. Morozov, Introduction to Non-linear Algebra, World Scientific Publishing, Hackensack, NJ, 2007. doi: 10.1142/6508. |
[71] | I. Domanov and L. D. Lathauwer, On Uniqueness and computation of the decomposition of a tensor into multilinear rank-$(1, L_r, L_r)$ terms, SIAM J. Matrix Anal. Appl., 41 (2020), 747-803. doi: 10.1137/18M1206849. |
[72] | P. Donnell, M. Banaji, A. Marginean and C. Pantea, Control: an open source framework for the analysis of chemical reaction networks, Bioinformatics, 30 (2014), 1633-1634. |
[73] | J. Draisma, R. Eggermont, R. Krone and A. Leykin, Noetherianity for infinite-dimensional toric varieties, Algebra Number Theory, 9 (2015), 1857-1880. doi: 10.2140/ant.2015.9.1857. |
[74] | J. Draisma, E. Horobeţ, G. Ottaviani, B. Sturmfels and R. R. Thomas, The Euclidean distance degree of an algebraic variety, Found. Comput. Math., 16 (2016), 99-149. doi: 10.1007/s10208-014-9240-x. |
[75] | J. Draisma, S. Kuhnt, P. Zwiernik and et al, Groups acting on Gaussian graphical models, Ann. Statist., 41 (2013), 1944-1969. doi: 10.1214/13-AOS1130. |
[76] | J. Draisma, G. Ottaviani and A. Tocino, Best rank-k approximations for tensors: generalizing Eckart–Young, Res. Math. Sci., (2018), 5–27. doi: 10.1007/s40687-018-0145-1. |
[77] | E. Duarte and C. Görgen, Equations defining probability tree models, J. Symbolic Comput., 99 (2020), 127-146. doi: 10.1016/j.jsc.2019.04.001. |
[78] | E. Duarte, O. Marigliano and B. Sturmfels, Discrete statistical models with rational maximum likelihood etimates, Bernoulli, 27 (2021), 135-154. doi: 10.3150/20-BEJ1231. |
[79] | B. Dubrovin, Theta functions and non-linear equations, Russian Math. Surveys, 36 (1981), 11-92. |
[80] | T. Duff, K. Kohn, A. Leykin and T. Pajdla, PLMP-point-line minimal problems in complete multi-view visibility, In Proceedings of the IEEE International Conference on Computer Vision, (2019), 1675–1684. |
[81] | S. Dye, K. Kohn, F. Rydell and R. Sinn, Maximum likelihood estimation for nets of conics, arXiv: 2011.08989, 2020. |
[82] | L. Ehrenpreis, Fourier Analysis in Several Complex Variables, Volume XVII of Pure and Applied Mathematics, Wiley-Interscience Publishers, New York-London-Sydney, 1970. |
[83] | M. Eichler and D. Zagier, The Theory of Jacobi Forms, Volume 55 of Progress in Mathematics, Birkhäuser Boston, 1985. doi: 10.1007/978-1-4684-9162-3. |
[84] | D. Eisenbud, Commutative Algebra: With a View Toward Algebraic Geometry, Graduate Texts in Mathematics. Springer New York, 2013. doi: 10.1007/978-1-4612-5350-1. |
[85] | P. Ellison, M. Feinberg, H. Ji, and D. Knight, Chemical reaction network toolbox, version 2.2, Available online at http://www.crnt.osu.edu/CRNTWin, 2012. |
[86] | R. Fabbri, T. Duff, H. Fan, M. H. Regan, D. d. C. d. Pinho, E. Tsigaridas, C. W. Wampler, J. D. Hauenstein, P. J. Giblin, B. Kimia, A. Leykin and T. Pajdla, TRPLP - Trifocal Relative Pose from Lines at Points, In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020. |
[87] | M. Feinberg, The existence and uniqueness of steady states for a class of chemical reaction networks, Arch. Rational Mech. Anal., 132 (1995), 311-370. doi: 10.1007/BF00375614. |
[88] | M. Feinberg, Foundations of Chemical Reaction Network Theory, Volume 202 of Applied Mathematical Sciences, Springer International Publishing, 2019. |
[89] |
E. Feliu, Injectivity, multiple zeros, and multistationarity in reaction networks, Proc. Roy. Soc. Edinburgh Sect. A, doi: 10.1098/rspa.2014.0530
|
[90] | E. Feliu, N. Kaihnsa, T. de Wolff and O. Yürük, The kinetic space of multistationarity in dual phosphorylation, J. Dynam. Differential Equations, 2020. |
[91] | C. Fevola, Y. Mandelshtam and B. Sturmfels, Pencils of quadrics: Old and new, arXiv: 2009.04334, 2020. |
[92] | M. A. Fischler and R. C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Communications of the ACM, 24 (1981), 381-395. doi: 10.1145/358669.358692. |
[93] | G. Fløystad, J. Kileel and G. Ottaviani, The Chow form of the essential variety in computer vision, J. Symbolic Comput., 86 (2018), 97-119. doi: 10.1016/j.jsc.2017.03.010. |
[94] | J. Frauendiener, C. Jaber and C. Klein, Efficient computation of multidimensional theta functions, J. Geom. Phys., 127 (2019), 147-158. doi: 10.1016/j.geomphys.2019.03.011. |
[95] | L. D. Garcia, M. Stillman and B. Sturmfels, Algebraic geometry of Bayesian networks, J. Symbolic Comput., 39 (2005), 331-355. doi: 10.1016/j.jsc.2004.11.007. |
[96] | P. Gaudry, Fast genus 2 arithmetic based on Theta functions, J. Math. Cryptol. J., 3 (2007), 243-265. doi: 10.1515/JMC.2007.012. |
[97] | D. Geiger, C. Meek, B. Sturmfels and et al, On the toric algebra of graphical models, Ann. Statist., 34 (2006), 1463-1492. doi: 10.1214/009053606000000263. |
[98] | I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston, MA, 1994. doi: 10.1007/978-0-8176-4771-1. |
[99] | C. Görgen, A. Maraj and L. Nicklasson, Staged tree models with toric structure, 2107.04516. |
[100] | P. Görlach, C. Lehn and and A.-L. Sattelberger, Algebraic analysis of the hypergeometric function $ _1F_1 $ of a matrix argument, Beiträge Algebra Geom., 62 (2021), 397-427. doi: 10.1007/s13366-020-00546-z. |
[101] | S. J. Gortler, A. D. Healy and D. P. Thurston, Characterizing generic global rigidity, Amer. J. Math., 132 (2010), 897-939. doi: 10.1353/ajm.0.0132. |
[102] | H.-C. Graf von Bothmer and K. Ranestad, A general formula for the algebraic degree in semidefinite programming, Bull. Math. Biol., 41 (2009), 193-197. doi: 10.1112/blms/bdn114. |
[103] | J. Graver, B. Servatius and H. Servatius, Combinatorial Rigidity, Volume 2 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1993. doi: 10.1090/gsm/002. |
[104] | D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/, 2020. |
[105] | G. Greuel, G. Pfister, O. Bachmann, C. Lossen and H. Schönemann, A Singular Introduction to Commutative Algebra, Springer Nature Book Archives Millennium. Springer, 2002. doi: 10.1007/978-3-662-04963-1. |
[106] | C. Häne, L. Heng, G. H. Lee, F. Fraundorfer, P. Furgale, T. Sattler and M. Pollefeys, 3D visual perception for self-driving cars using a multi-camera system: Calibration, mapping, localization, and obstacle detection, Image and Vision Computing, 68 (2017), 14-27. |
[107] | M. Härkönen, B. Hollering, F. T. Kashani and J. I. Rodriguez, Algebraic optimization degree, ACM Commun. Comput. Algebra, 54 (2020), 44-48. |
[108] | R. Hartley and F. Kahl, Critical configurations for projective reconstruction from multiple views, Int. J. Comput. Vis., 71 (2007), 5-47. |
[109] | R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge, 2nd edition, 2003. |
[110] | R. I. Hartley, Chirality, Int. J. Comput. Vis., 26 (1998), 41-61. |
[111] | R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Springer New York, 2013. doi: 10.1007/978-0-387-22676-7. |
[112] | H. Hashiguchi, Y. Numata, N. Takayama and A. Takemura, The holonomic gradient method for the distribution function of the largest root of a Wishart matrix, J. Multivariate Anal., 117 (2013), 296-312. doi: 10.1016/j.jmva.2013.03.011. |
[113] | J. D. Hauenstein and A. C. Liddell, A hybrid symbolic-numeric approach to exceptional sets of generically zero-dimensional systems, In Proceedings of the 2015 International Workshop on Parallel Symbolic Computation, PASCO '15, Association for Computing Machinery, (2015), 53–60. doi: 10.1145/2790282.2790288. |
[114] | K. Heal, J. Wang, S. J. Gortler and T. Zickler, A lighting-invariant point processor for shading, (2020), 94–102. |
[115] | A. Heaton and S. Timme, Catastrophe in elastic tensegrity frameworks, arXiv: 2009.13408, 2020. |
[116] | D. Hilbert, Über die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann., 32 (1888), 342-350. doi: 10.1007/BF01443605. |
[117] | C. J. Hillar and S. Sullivant, Finite Gröbner bases in infinite dimensional polynomial rings and applications, Adv. Math., 229 (2012), 1-25. doi: 10.1016/j.aim.2011.08.009. |
[118] | R. Hirota, The Direct Method in Soliton Theory, Cambridge Tracts in Mathematics, Cambridge University Press, 2004. doi: 10.1017/CBO9780511543043. |
[119] | N. Hitchin, G. Segal and R. S. Ward, Integrable Systems: Twistors, Loop Groups, and Riemann Surfaces, Oxford Graduate Texts in Mathematics 4, Clarendon Press, Oxford, 1999. |
[120] | B. Hollering and S. Sullivant, Identifiability in phylogenetics using algebraic matroids, J. Symbolic Comput., 104 (2021), 142-158. doi: 10.1016/j.jsc.2020.04.012. |
[121] | S. Hoşten and S. Sullivant, Gröbner bases and polyhedral geometry of reducible and cyclic models, J. Combin. Theory Ser. A, 100 (2002), 277-301. doi: 10.1006/jcta.2002.3301. |
[122] | R. Hotta, K. Takeuchi, and T. Tanisaki, $D$-Modules, Perverse Sheaves, and Representation Theory, Volume 236 of Progress in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 2008. Translated from the 1995 Japanese edition by Takeuchi. doi: 10.1007/978-0-8176-4523-6. |
[123] | J. Huh, Varieties with maximum likelihood degree one, J. Algebr. Stat., 5 (2014), 1-17. doi: 10.18409/jas.v5i1.22. |
[124] | J. Huh and B. Sturmfels, Likelihood geometry, In Combinatorial Algebraic Geometry, volume 2108 of Lecture notes in mathematics, Springer, New York, (2014), 63–117. doi: 10.1007/978-3-319-04870-3_3. |
[125] | B. Hunyadi, D. Camps, L. Sorber, W. V. Paesschen, M. D. Vos, S. V. Huffel and L. D. Lathauwer, Block term decomposition for modelling epileptic seizures, EURASIP J. Adv. Signal Process., 139 (2014). |
[126] | A. Hurwitz, Ueber den Vergleich des arithmetischen und des geometrischen Mittels, J. Reine Angew. Math., 108 (1891), 266-268. doi: 10.1515/crll.1891.108.266. |
[127] | S. Iliman and T. de Wolff, Amoebas, nonnegative polynomials and sums of squares supported on circuits, Res. Math. Sci., 3 (2016). doi: 10.1186/s40687-016-0052-2. |
[128] | B. Joshi and A. Shiu, A survey of methods for deciding whether a reaction network is multistationary, Math. Model. Nat. Phenom., 10 (2015), 47-67. doi: 10.1051/mmnp/201510504. |
[129] | F. Kahl and D. Henrion, Globally optimal estimates for geometric reconstruction problems, Int. J. Comput. Vis., 74 (2007), 3-15. |
[130] | M. Kashiwara, $B$-functions and holonomic systems, rationality of roots of $B$-functions, Invent. Math., 38 (1976), 33-53. doi: 10.1007/BF01390168. |
[131] | M. Kashiwara, The Riemann–Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci., 20 (1984), 319-365. doi: 10.2977/prims/1195181610. |
[132] | M. Kauers, M. Jaroschek and F. Johansson, Ore polynomials in Sage, arXiv: 1306.4263, 2013. doi: 10.1007/978-3-319-15081-9_6. |
[133] | J. Kileel, Minimal problems for the calibrated trifocal variety, SIAM J. Appl. Algebra Geom., 1 (2017), 575-598. doi: 10.1137/16M1104482. |
[134] | Y. Kodama, KP Solitons and the Grassmannians. Combinatorics and Geometry and Two-dimensional Wave Patterns, Volume 22 of Briefs in Mathematical Physics, Springer, 2017. doi: 10.1007/978-981-10-4094-8. |
[135] | Y. Kodama and L. Williams, KP solitons and total positivity for the Grassmannian, Invent. Math., 198 (2014), 637-699. doi: 10.1007/s00222-014-0506-3. |
[136] | Y. Kodama and Y. Xie, Space curves and solitons of the KP hierarchy: I. The l-th generalized KdV hierarchy, SIGMA, 17 (2021), 024. doi: 10.3842/SIGMA.2021.024. |
[137] | E. R. Kolchin, Differential Algebra and Algebraic Groups, Pure and Applied Mathematics, Academic Press, 1973. |
[138] | C. Koutschan, Holonomic functions (user's guide), Technical Report 10-01, RISC Report Series, Johannes Kepler University, Linz, Austria, 2010. |
[139] | T. Koyama, The annihilating ideal of the Fisher integral, Kyushu J. Math., 74 (2020), 415-427. |
[140] | I. M. Krichever, Methods of algebraic geometry in the theory of nonlinear equations, Russian Math. Surveys, 32 (1977), 44-48. |
[141] | R. Krone, A. Leykin and A. Snowden, Hilbert series of symmetric ideals in infinite polynomial rings via formal languages, J. Algebra, 485 (2017), 353-362. doi: 10.1016/j.jalgebra.2017.05.014. |
[142] | J. B. Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics, Linear Algebra Appl., 18 (1977), 95-138. doi: 10.1016/0024-3795(77)90069-6. |
[143] | Z. Kukelova, M. Bujnak and T. Pajdla, Automatic generator of minimal problem solvers, In European Conference on Computer Vision, Springer, (2008), 302–315. |
[144] | Z. Kukelova and T. Pajdla, A minimal solution to the autocalibration of radial distortion, In 2007 IEEE Conference on Computer Vision and Pattern Recognition, (2007), 1–7. |
[145] | P. Lairez, Computing periods of rational integrals, Math. Comp., 85 (2016), 1719-1752. doi: 10.1090/mcom/3054. |
[146] | P. Lairez, M. Mezzarobba and M. Safey El Din, Computing the volume of compact semi-algebraic sets, In ISSAC 2019 - International Symposium on Symbolic and Algebraic Computation, Beijing, China, July 2019, ACM. doi: 10.1145/3326229.3326262. |
[147] | G. Laman, On graphs and rigidity of plane skeletal structures, J. Engrg. Math., 4 (1970), 331-340. doi: 10.1007/BF01534980. |
[148] | J. M. Landsberg, Tensors: Geometry and Applications, Graduate Studies in Mathematics, AMS, Providence, Rhode Island, 2012. doi: 10.1090/gsm/128. |
[149] | V. Larsson, K. Astrom and M. Oskarsson, Efficient solvers for minimal problems by syzygy-based reduction, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2017), 820–829. |
[150] | J. B. Lasserre, Moments, Positive Polynomials and Their Applications, Volume 1 of Imperial College Press Optimization, World Scientific, 2010. |
[151] | L. D. Lathauwer, Decompositions of a higher-order tensor in block terms - Part II: Definitions and uniqueness, SIAM J. Matrix Anal. Appl., 30 (2008), 1033-1066. doi: 10.1137/070690729. |
[152] | M. Laurent and N. Kellershohn, Multistability: a major means of differentiation and evolution in biological systems, Trends Biochem. Sciences, 24 (1999), 418-422. |
[153] | S. Lauritzen, C. Uhler, P. Zwiernik and et al., Maximum likelihood estimation in Gaussian models under total positivity, Ann. Statist., 47 (2019), 1835-1863. doi: 10.1214/17-AOS1668. |
[154] | V. Levandovskyy and J. Martín-Morales, dmod_lib: A $\mathtt{Singular: Plural} $ library for algorithms for algebraic $D$-modules, https://www.singular.uni-kl.de/Manual/4-2-0/sing\_537. |
[155] | A. Leykin, Numerical algebraic geometry for macaulay2, J. Softw. Algebra Geom., 3 (2011), 5-10. doi: 10.2140/jsag.2011.3.5. |
[156] | M. Lieblich and L. Van Meter, Two Hilbert schemes in computer vision, SIAM J. Appl. Algebra Geom., 4 (2020), 297-321. doi: 10.1137/18M1200117. |
[157] | J. Little, Translation manifolds and the converse to Abel's theorem, Compos. Math., 49 (1983), 147-171. |
[158] | Q. Liu, Algebraic Geometry and Arithmetic Curves, Oxford Graduate Texts in Mathematics, Oxford University Press, 2006. |
[159] | M. Luxton and Z. Qu, Some results on tropical compactifications, Trans. Amer. Math. Soc., 363 (2011), 4853-4876. doi: 10.1090/S0002-9947-2011-05254-2. |
[160] | D. Maclagan and B. Sturmfels, Introduction to Tropical Geometry, Volume 161 of Graduate Studies in Mathematics, American Mathematical Society, Providence, R.I., 2015. doi: 10.1090/gsm/161. |
[161] | P. Maisonobe, Filtration relative, l'idéal de Bernstein et ses pentes, hal-01285562v2, 2016. |
[162] | Maplesoft, A division of Waterloo Maple Inc., Maple, 2019. |
[163] | A. Maraj, Algebraic and Geometric Properties of Hierarchical Models, PhD Thesis, 2020. |
[164] | A. Maraj and U. Nagel, Equivariant Hilbert series for hierarchical models, Algebraic Statistics, 12 (2021), 21-42. doi: 10.2140/astat.2021.12.21. |
[165] | M. Marshall, Positive Polynomials and Sums Of Squares, Volume 146 of Mathematical Surveys and Monographs, American Mathematical Society, 2008. doi: 10.1090/surv/146. |
[166] | Max Planck Institute for Mathematics in the Sciences, Mathrepo. Mathematical data and software, Repository website of the MPI MiS, https://mathrepo.mis.mpg.de/. |
[167] | L. G. Maxim, J. I. Rodriguez and B. Wang, Euclidean distance degree of the multiview variety, SIAM J. Appl. Algebra Geom., 4 (2020), 28-48. doi: 10.1137/18M1233406. |
[168] | Z. Mebkhout, Une équivalence de catégories, Compos. Math., 51 (1984), 51-62. |
[169] | M. Michałek and B. Sturmfels, Lecture: Introduction to Nonlinear Algebra, Available at https://youtu.be/1EryuvBLY80, 2018. |
[170] | M. Michałek and B. Sturmfels, Invitation to Nonlinear Algebra, Volume 211 of Graduate Studies in Mathematics, American Mathematical Society, 2021. Available at https://personal-homepages.mis.mpg.de/michalek/NonLinearAlgebra.pdf. |
[171] | E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Volume 227 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2005. |
[172] | P. Misra and S. Sullivant, Gaussian graphical models with toric vanishing ideals, Ann. Inst. Statist. Math., (2020), 1–29. doi: 10.1007/s10463-020-00765-0. |
[173] | R. J. Muirhead, Systems of partial differential equations for hypergeometric functions of matrix argument, Ann. Math. Statist., 41 (1970), 991-1001. doi: 10.1214/aoms/1177696975. |
[174] | R. J. Muirhead, Aspects of Multivariate Statistical Theory, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1982. |
[175] | D. Mumford, Tata Lectures on Theta I, Modern Birkhäuser Classics. Birkhäuser Boston, 2007. doi: 10.1007/978-0-8176-4578-6. |
[176] | U. Nagel and T. Römer, Equivariant Hilbert series in non-Noetherian polynomial rings, J. Algebra, 486 (2017), 204-245. doi: 10.1016/j.jalgebra.2017.05.011. |
[177] | R. Nagpal and A. Snowden, Symmetric ideals of the infinite polynomial ring, arXiv: 2107.13027, 2021. |
[178] | H. Nakayama, K. Nishiyama, M. Noro, K. Ohara, T. Sei, N. Takayama and A. Takemura, Holonomic gradient descent and its application to the Fisher–Bingham integral, Adv. in Appl. Math., 47 (2011), 639-658. doi: 10.1016/j.aam.2011.03.001. |
[179] | A. Nakayashiki, On Algebraic Expansions of Sigma Functions for $(n, s)$ curves, Asian J. Math., 14 (2010), 175-212. doi: 10.4310/AJM.2010.v14.n2.a2. |
[180] | A. Nakayashiki, Degeneration of trigonal curves and solutions of the KP-hierarchy, Nonlinearity, 31 (2018), 3567-3590. doi: 10.1088/1361-6544/aabf00. |
[181] | J. Nie and K. Ranestad, Algebraic degree of polynomial optimization, SIAM J. Optim., 20 (2009), 485-502. doi: 10.1137/080716670. |
[182] | J. Nie, K. Ranestad and B. Sturmfels, The algebraic degree of semidefinite programming, Math. Program., 122 (2010), 379-405. doi: 10.1007/s10107-008-0253-6. |
[183] | D. Nistér, An efficient solution to the five-point relative pose problem, IEEE Transactions on Pattern Analysis And Machine Intelligence, 26 (2004), 756-770. |
[184] | M. Noro, System of partial differential equations for the hypergeometric function $_1F_1$ of a matrix argument on diagonal regions, ISSAC'16: Proceedings of the ACM on International Symposium of Symbolic and Algebraic Computation, July 2016,381–388. doi: 10.1145/2930889.2930905. |
[185] | S. Novikov, S. Manakov, L. Pitaevskii and V. Zakharov, Theory of Solitons: The Inverse Scattering Method, Monographs in Contemporary Mathematics, Springer, 1984. |
[186] | F. Ollivier, Standard bases of differential ideals, Lecture Notes in Comput. Sci., 508 (1990), 304-321. doi: 10.1007/3-540-54195-0_60. |
[187] | G. Ottaviani and P. Reichenbach, Tensor rank and complexity, arXiv: 2004.01492, 2020. |
[188] | G. Ottaviani and L. Sodomaco, The distance function from a real algebraic variety, Comput. Aided Geom. Design, 82 (2020), 101927. doi: 10.1016/j.cagd.2020.101927. |
[189] | E. M. Ozbudak, M. Thattai, H. N. Lim, B. I. Shraiman and A. Van Oudenaarden, Multistability in the lactose utilization network of escherichia coli, Nature, 427 (2004), 737-740. |
[190] | V. P. Palamodov, Linear Differential Qperators with Constant Coefficients, Volume 168 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York-Berlin, 1970. |
[191] | E. E. Papalexakis, C. Faloutsos and N. D. Sidiropoulos, Tensors for data mining and data fusion: Models, applications, and scalable algorithms, ACM Trans. Intell. Syst. Technol., 8 (2016). |
[192] | M. Pérez Millán, A. Dickenstein, A. Shiu and and C. Conradi, Chemical reaction systems with toric steady states, Bull. Math. Biol., 74 (2012), 1027-1065. doi: 10.1007/s11538-011-9685-x. |
[193] | S. Petrović, What is... a markov basis?, Notices of the American Mathematical Society, 66 (2019), 1088-1092. |
[194] | G. Pistone and H. Wynn, Generalised confounding with grobner bases, Biometrika, 83 (1996), 653-666. doi: 10.1093/biomet/83.3.653. |
[195] | H. Pollaczek-Geiringer, Über die Gliederung ebener Fachwerke, J. Appl. Math. Mech., 7 (1927), 58-72. |
[196] | A. Pryhuber, R. Sinn and R. R. Thomas, Existence of two view chiral reconstructions, arXiv: 2011.07197, 2020. |
[197] | Y. Qi, P. Comon and L.-H. Lim, Semialgebraic geometry of nonnegative tensor rank, SIAM J. Matrix Anal. Appl., 37 (2016), 1556-1580. doi: 10.1137/16M1063708. |
[198] | R Core Team, $\mathtt{R} $: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2013. |
[199] | O. Regev and N. Stephens-Davidowitz, An inequality for Gaussians on lattices, SIAM J. Discrete Math., 31 (2017), 749-757. doi: 10.1137/15M1052226. |
[200] | T. Reichelt, M. Schulze, C. Sevenheck and U. Walther, Algebraic aspects of hypergeometric differential equations, Beiträge Algebra Geom., 2021. doi: 10.1007/s13366-020-00560-1. |
[201] | J. F. Ritt, Differential Algebra, Volume 14 of American Mathematical Society: Colloquium Publications, American Mathematical Society, 1950. |
[202] | A. A. Rontogiannis, E. Kofidis and P. Giampouras, Block-term tensor decomposition: Model selection and computation, arXiv: 2002.09759, 2020. |
[203] | D. M. Rosen, L. Carlone, A. S. Bandeira and and J. J. Leonard, SE-Sync: A certifiably correct algorithm for synchronization over the special Euclidean group, The International Journal of Robotics Research, 38 (2019), 95-125. |
[204] | C. Sabbah, Proximité évanescente. I. La structure polaire dun $D$-module, Compositio Math., 62 (1987), 283-328. |
[205] | M. Saito, B. Sturmfels and N. Takayama, Gröbner deformations of hypergeometric differential equations, volume 6 of Algorithms and Computation in Mathematics, Springer-Verlag, Berlin, 2000. doi: 10.1007/978-3-662-04112-3. |
[206] | B. Salvy and P. Zimmermann, $\mathtt{gfun} $: A maple package for the manipulation of generating and holonomic functions in one variable, ACM Trans. Math. Software, 20 (1994), 163-177. |
[207] | M. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann manifold, In Nonlinear Partial Differential Equations in Applied Science; Proceedings of The U.S.-Japan Seminar, Tokyo, 1982, North-Holland Mathematics Studies, North-Holland, (1983), 259–271. |
[208] | A.-L. Sattelberger and B. Sturmfels, $D$-modules and holonomic functions, arXiv: 1910.01395, 2019. |
[209] | A.-L. Sattelberger and R. van der Veer, Maximum likelihood estimation from a tropical and a Bernstein–Sato perspective, arXiv: 2101.03570, 2021. |
[210] | G. Segal and G. Wilson, Loop groups and equations of KdV type, Publ. Math. Inst. Hautes Etudes Sci., 61 (1985), 5-65. |
[211] | H. Segal, S. Grushevsky and R. S. Manni, An explicit solution to the weak Schottky problem, Algebr. Geom., 8 (2021), 358-373. doi: 10.14231/ag-2021-009. |
[212] | T. Sei, H. Shibata, A. Takemura, K. Ohara and N. Takayama, Properties and applications of Fisher distribution on the rotation group, J. Multivariate Anal., 116 (2013), 440-455. doi: 10.1016/j.jmva.2013.01.010. |
[213] | Y. Shitov, A counterexample to Comon's conjecture, SIAM Journal on Applied Algebra and Geometry, 2 (2018), 428-443. doi: 10.1137/17M1131970. |
[214] | N. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. Papalexakis and C. Faloutsos, Tensor decomposition for signal processing and machine learning, IEEE Transactions on Signal Processing, 65 (2017), 3551-3582. doi: 10.1109/TSP.2017.2690524. |
[215] | R. Silhol, The Schottky problem for real genus 3 M-curves, Math. Z., 236 (2001), 841-881. doi: 10.1007/PL00004854. |
[216] | M. Sitharam, A. St. John, J. Sidman and ed itors, Handbook of Geometric Constraint Systems Principles, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2019. |
[217] | A. J. Sommese and C. W. Wampler, The Numerical Solution of Systems of Polynomials Arising in Engineering and Science, World Scientific, 2005. doi: 10.1142/9789812567727. |
[218] | M. Sorensen and L. De Lathauwer, Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank-$(L_r, n, L_r, n, 1)$ terms—Part I: Uniqueness, SIAM J. Matrix Anal. Appl., 36 (2015), 496-522. doi: 10.1137/140956853. |
[219] | M. Sorensen and L. De Lathauwer, Multidimensional harmonic retrieval via coupled canonical polyadic decomposition Part I: Model and identifiability, IEEE Trans. Signal Process., 65 (2017), 517-527. doi: 10.1109/TSP.2016.2614796. |
[220] | M. Sorensen and L. De Lathauwer, Multidimensional harmonic retrieval via coupled canonical polyadic decomposition Part II: Algorithm and multirate sampling, IEEE Trans. Signal Process., 65 (2017), 528-539. doi: 10.1109/TSP.2016.2614797. |
[221] | D. L. L. Sorensen M. and Do manov I, Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank-$(L_r, n, L_r, n, 1)$ terms — Part II: Algorithms, SIAM J. Matrix Anal. Appl., 36 (2015), 1015-1045. doi: 10.1137/140956865. |
[222] | G. Strang, Computational Science and Engineering, Wellesley-Cambridge Press, Wellesley, MA, 2007. |
[223] | B. Sturmfels, Gröbner Bases and Convex Polytopes, Volume 8 of University Lecture Series, American Mathematical Soc., 1996. doi: 10.1090/ulect/008. |
[224] | B. Sturmfels, Solving Systems of Polynomial Equations, Number 97 in CBMS Regional Conferences Series. American Mathematical Society, 2002. doi: 10.1090/cbms/097. |
[225] | B. Sturmfels, What is … a Gröbner basis?, Notices Amer. Math. Soc., 52 (2005), 1199-1200. |
[226] | B. Sturmfels and S. Sullivant, Toric ideals of phylogenetic invariants, J. Comput. Biol., 12 (2005), 204-228. |
[227] | B. Sturmfels and S. Telen, Likelihood equations and scattering amplitudes, arXiv: 2012.05041, 2020. |
[228] | B. Sturmfels and C. Uhler, Multivariate Gaussian, semidefinite matrix completion, and convex algebraic geometry, Ann. Inst. Statist. Math., 62 (2010), 603-638. doi: 10.1007/s10463-010-0295-4. |
[229] | B. Sturmfels, C. Uhler and P. Zwiernik, Brownian motion tree models are toric, Kybernetika, 56 (2020), 1154-1175. doi: 10.14736/kyb-2020-6-1154. |
[230] | S. Sullivant, Gaussian conditional independence relations have no finite complete characterization, J. Pure Appl. Algebra, 213 (2009), 1502-1506. doi: 10.1016/j.jpaa.2008.11.026. |
[231] | S. Sullivant, Algebraic Statistics, Volume 194 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2018. doi: 10.1090/gsm/194. |
[232] | C. Swierczewski and B. Deconinck, Computing Riemann theta functions in Sage with applications, Math. Comput. Simulation, 127 (2016), 263-272. doi: 10.1016/j.matcom.2013.04.018. |
[233] | R. Szeliski, Computer Vision - Algorithms and Applications, Texts in Computer Science, Springer, 2011. |
[234] | N. Takayama, T. Koyama, T. Sei, H. Nakayama, and K. Nishiyama, $\mathtt{hgm} $: Holonomic Gradient Method and Gradient Descent, $\mathtt{R} $ package version 1.17, 2017. |
[235] | The Sage Developers, SageMath, the Sage Mathematics Software System, https://www.sagemath.org. |
[236] | A. Torres and E. Feliu, Detecting parameter regions for bistability in reaction networks, arXiv: 1909.13608, 2019. |
[237] | R. Vakil, The rising sea: Foundations of algebraic geometry, Available at http://math.stanford.edu/vakil/216blog/index.html. |
[238] | J. Verschelde, Algorithm 795: PHCpack: A General-Purpose Solver for Polynomial Systems by Homotopy Continuation, ACM Trans. Math. Softw., 25 (1999), 251C276. |
[239] | R. Vidal, Y. Ma and S. Sastry, Generalized principal component analysis (GPCA), IEEE Transactions on Pattern Analysis and Machine Intelligence, 27 (2005), 1945-1959. doi: 10.1007/978-0-387-87811-9. |
[240] | C. Wiuf and E. Feliu, Power-law kinetics and determinant criteria for the preclusion of multistationarity in networks of interacting species, SIAM J. Appl. Dyn. Syst., 12 (2013), 1685-1721. doi: 10.1137/120873388. |
[241] | R. J. Woodham, Photometric method for determining surface orientation from multiple images, In Shape From Shading, (1989), 513–531. |
[242] | W. Xiong and J. E. Ferrell Jr, A positive-feedback-based bistable 'memory module' that governs a cell fate decision, Nature, 426 (2003), 460-465. |
[243] | M. Yang, On partial and generic uniqueness of block term tensor decompositions, Annali dell'universita' di Ferrara, 60 (2014), 465-493. doi: 10.1007/s11565-013-0190-z. |
[244] | D. Zeilberger, A holonomic systems approach to special functions identities, J. Comput. Appl. Math., 32 (1990), 321-368. doi: 10.1016/0377-0427(90)90042-X. |
[245] | A. I. Zobnin, One-element differential standard bases with respect to inverse lexicographical orderings, J. Math. Sci. (N. Y.), 163 (2009), 523-533. doi: 10.1007/s10958-009-9690-x. |
Staged tree [78] modeling the discrete statistical experiment of flipping a biased coin twice.
Left: Trott curve. Right: The wave derived from the Trott curve whose parameters are (13) at t = 0 [11]
Left: A soliton wave that is taken in Nuevo Vallarta, Mexico by Ablowitz [3,2]. Right: A Y-soliton
Configuration space of a rhombus in the plane. Left: Placements of the graph in the plane with the bottom two vertices fixed in place and the top two vertices free to move. Right: Projection of the configuration space onto a random three-dimensional subspace. The marked points on the right correspond to blue colored placements on the left, giving two ways to visualize the same data. There are only three singular points since four of the apparent intersections are artifacts of our 2d drawing of a 3d image
The left and right images are color-coded to match. Left: We project
Three rigid bars in black, two elastic cables in green. Left: The elastic framework in a stable configuration. Right: Configuration of the framework after crossing the catastrophe discriminant, depicted in red. The three square vertices are pinned, the cross vertex is controlled, and the two circular vertices are free: their position is found by minimizing energy over the configuration space, which is visualized by the grey, dashed coupler curve. Bottom: the energy function along the coupler curve with the current position depicted in green.
A pinhole camera with principal point equal to