[1]
|
P. N. Anh, A hybrid extragradient method extended to fixed point problems and equilibrium problems, Optim., 62 (2013), 271-283.
doi: 10.1080/02331934.2011.607497.
|
[2]
|
G. Bigi, M. Castellani, M. Pappalardo and M. Passacantando, Existence and solution methods for equilibria, Eur. J. Oper. Res., 227 (2013), 1-11.
doi: 10.1016/j.ejor.2012.11.037.
|
[3]
|
E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 127-149.
|
[4]
|
P. L. Combettes and A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), 117-136.
|
[5]
|
J. Contreras, M. Klusch and J. B. Krawczyk, Numerical solution to Nash-Cournot equilibria in coupled constraint electricity markets, IEEE Trans. Power Syst., 19 (2004), 195-206.
|
[6]
|
B. V. Dinh and D. S. Kim, Extragradient algorithms for equilibrium problems and symmetric generalized hybrid mappings, Optim. Lett., 11 (2016), 537-553.
doi: 10.1007/s11590-016-1025-5.
|
[7]
|
B. V. Dinh and L. D. Muu, A projection algorithm for solving pseudomonotone equilibrium problems and it's application to a class of bilevel equilibria, Optim., 64 (2015), 559-575.
doi: 10.1080/02331934.2013.773329.
|
[8]
|
B. V. Dinh, P. G. Hung and L. D. Muu, Bilevel optimization as a regularization approach to pseudomonotone equilibrium problems, Numer. Funct. Anal. Optim., 35 (2014), 539-563.
doi: 10.1080/01630563.2013.813857.
|
[9]
|
B. V. Dinh and L. D. Muu, On penalty and gap function methods for bilevel equilibrium problems, J. Appl. Math., (2011) DOI: 10.1155/2011/646452.
doi: 10.1155/2011/646452.
|
[10]
|
F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer, New York, 2003.
|
[11]
|
A. Genel and J. Lindenstrass, An example concerning fixed points, Isarel J. Math., 22 (1975), 81-86.
doi: 10.1007/BF02757276.
|
[12]
|
D. V. Hieu, L. D. Muu and P. K. Anh, Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings, Numer. Algor., 73 (2016), 197-217.
doi: 10.1007/s11075-015-0092-5.
|
[13]
|
M. Hojo, T. Suzuki and W. Takahashi, Fixed point theorems and convergence theorems for generalized hybrid non-self mappings in Hilbert spaces, J. Nonlinear Convex Anal., 14 (2013), 363-376.
|
[14]
|
H. Iiduka, Fixed point optimization algorithm and its application to power control in CDMA data networks, Math. Program., Ser. A, 133 (2012), 227-242.
doi: 10.1007/s10107-010-0427-x.
|
[15]
|
S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 40 (1974), 147-150.
doi: 10.2307/2039245.
|
[16]
|
S. Itoh and W. Takahashi, The common fixed point theory of single-valued mappings and multi-valued mappings, Pacific J. Math., 79 (1978), 493-508.
|
[17]
|
T. Kawasaki and W. Takahashi, Existence and mean approximation of fixed points of generalized hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal., 14 (2013), 71-87.
|
[18]
|
F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math., 91 (2008), 166-177.
doi: 10.1007/s00013-008-2545-8.
|
[19]
|
I. V. Konnov, Combined Relaxation Methods for Variational Inequalities, Lecture Notes in Economics and Mathematical System, 495 (2001), Springer, Berlin.
doi: 10.1007/978-3-642-56886-2.
|
[20]
|
G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Matekon, 12 (1976), 747-756.
|
[21]
|
W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510.
doi: 10.2307/2032162.
|
[22]
|
F. Moradlou and Al izadeh, Strong convergence theorem by a new iterative method for equilibrium problems and symmetric generalized hybrid mappings, Mediterr. J. Math., 13 (2016), 379-390.
doi: 10.1007/s00009-014-0462-6.
|
[23]
|
A. Moudafi, Proximal point algorithm extended to equilibrium problems, J. Nat. Geom., 15 (1999), 91-100.
|
[24]
|
L. D. Muu and W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal.: TMA., 18 (1992), 1159-1166.
doi: 10.1016/0362-546X(92)90159-C.
|
[25]
|
L. D. Muu and T. D. Quoc, Regularization algorithms for solving monotone Ky Fan inequalities with application to a Nash-Cournot equilibrium model, J. Optim. Theory Appl., 142 (2009), 185-204.
doi: 10.1007/s10957-009-9529-0.
|
[26]
|
R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.
|
[27]
|
J. Schu, Weak and strong convergence to fixed points of asymptotically noexpansive mappings, Bulletin of the Australian Math. Soc., 43 (1991), 153-159.
doi: 10.1017/S0004972700028884.
|
[28]
|
A. Tada and W. Takahashi, Weak and strong convergence theorem for nonexpansive mapping and equilibrium problem, J. Optim. Theory Appl., 133 (2007), 359-370.
doi: 10.1007/s10957-007-9187-z.
|
[29]
|
W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 118 (2003), 417-428.
doi: 10.1023/A:1025407607560.
|
[30]
|
W. Takahashi, N. C. Wong and J. C. Yao, Fixed point theorems for new generalized hybrid mappings in Hilbert spaces and applications, Taiwanese J. Math., 17 (2013), 1597-1611.
doi: 10.11650/tjm.17.2013.2921.
|
[31]
|
W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal., 11 (2010), 79-88.
|
[32]
|
D. Q. Tran, L. M. Dung and V. H. Nguyen, Extragradient algorithms extended to equilibrium problems, Optim., 57 (2008), 749-776.
doi: 10.1080/02331930601122876.
|
[33]
|
N. N. Tam, J. C. Yao and N. D. Yen, Solution methods for pseudomonotone variational inequalities, J. Optim. Theory Appl., 38 (2008), 253-273.
doi: 10.1007/s10957-008-9376-4.
|
[34]
|
P. T. Vuong, J. J. Strodiot and V. H. Nguyen, Extragradient methods and linesearch algorithms for solving Ky Fan inequalities and fixed point problems, J. Optim. Theory Appl., 155 (2013), 605-627.
doi: 10.1007/s10957-012-0085-7.
|
[35]
|
H. K. Xu, A variable Krasnosel'ski$\mathop {\rm{i}}\limits^ \vee$-Mann algorithm and the multiple-set split feasibility problem, Inverse Problems, 22 (2006), 2021-2034.
doi: 10.1088/0266-5611/22/6/007.
|
[36]
|
C. M. Yanes and H. K. Xu, Strong convergence of the $C Q$ method for fixed point iteration processes, Nonlinear Anal. TMA., 64 (2006), 2400-2411.
doi: 10.1016/j.na.2005.08.018.
|
[37]
|
E. Zeidler, Nonlinear Functional Analysis and Its Applications I, Springer-Verlag, New York, 1986.
doi: 10.1007/978-1-4612-4838-5.
|