• Previous Article
    Global optimality conditions and duality theorems for robust optimal solutions of optimization problems with data uncertainty, using underestimators
  • NACO Home
  • This Issue
  • Next Article
    Weak convergence theorems for symmetric generalized hybrid mappings and equilibrium problems
March  2022, 12(1): 79-91. doi: 10.3934/naco.2021052

Measuring efficiency of a recycling production system with imprecise data

1. 

Department of Applied Mathematics, National Chiayi University, Chiayi, Taiwan

2. 

Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu, Taiwan

3. 

Graduate Institute of Human Resource and Knowledge Management, National Kaohsiung Normal University, Kaohsiung, Taiwan

* Corresponding author: Cheng-Feng Hu

Received  March 2020 Revised  October 2021 Published  March 2022 Early access  November 2021

Fund Project: The first author is supported by MOST grant 109-2221-E-415-010

Resources scarcity and environmental degradation have made sustainable resource utilization and environmental protection worldwide. A circular economy system considers economic production activities as closed-loop feedback cycles in which resources are used sustainably and cyclically. Improving the eco-efficiency of the circular economy system has both theoretical value and practical meaning. In this work, the efficiency measurement model of the circular economy system with imprecise data based on network data envelopment analysis is proposed. The two-level mathematical programming approach is employed for measuring the system and process efficiencies. The lower and upper bounds of the efficiencies scores are calculated by transformed conventional one-level linear programs so that the existing solution methods can be applied. The proposed method is applied to assess the circular economy system of EU countries. Our results show that most countries have large difference among fuzzy efficiencies between the production efficiency and recycling efficiency stages, which reveals the source that causes the low efficiency of the circular economy system.

Citation: Cheng-Feng Hu, Hsiao-Fan Wang, Tingyang Liu. Measuring efficiency of a recycling production system with imprecise data. Numerical Algebra, Control & Optimization, 2022, 12 (1) : 79-91. doi: 10.3934/naco.2021052
References:
[1]

L. CastelliR. Pesenti and W. Ukovich, DEA-like models for the efficiency evaluation of hierarchically structured units, Eur. J. Oper. Res., 154 (2004), 465-476.  doi: 10.1016/S0377-2217(03)00182-6.  Google Scholar

[2]

A. Charnes and W. W. Cooper, Programming with linear fractional functionals, Nav. Res. Logist. Q., 9 (1962), 181-186.  doi: 10.1002/nav.3800090303.  Google Scholar

[3]

A. CharnesW. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, Eur. J. Oper. Res., 2 (1978), 429-444.  doi: 10.1016/0377-2217(78)90138-8.  Google Scholar

[4]

Y. ChenJ. DuS. H. David and J. Zhu, DEA model with shared resources and efficiency decomposition, Eur. J. Oper. Res., 207 (2010), 339-349.  doi: 10.1016/j.ejor.2010.03.031.  Google Scholar

[5]

W. ChenW. J. LiuY. GengS. OhnishiL. SunW. Y. HanX. Tian and S. Z. Zhong, Life cycle based emergy analysis on China's cement production, J. Clean. Prod., 131 (2016), 1-8.   Google Scholar

[6]

W. D. Cook and L. M. Seiford, Data envelopment analysis (DEA)-Thirty years on, Eur. J. Oper. Res., 192 (2009), 1-17.  doi: 10.1016/j.ejor.2008.01.032.  Google Scholar

[7]

R. F$\ddot{a}$re and S. Grosskopf, Network DEA, Socio. Econ. Plann. Sci., 4 (2000), 35-49.   Google Scholar

[8]

C. Kao and S. T. Liu, Fuzzy efficiency measures in data envelopment analysis, Fuzzy Sets Syst., 113 (2000), 427-437.   Google Scholar

[9]

H. MikulcicH. CabezasM. Vujanovic and N. Duic, Environmental assessment of different cement manufacturing processes based on emergy and ecological footprint analysis, J. Clean. Prod., 130 (2016), 1-25.   Google Scholar

[10] D. Pearce and R. K. Turner, Economics of Natural Resources and the Environment, The Johns Hopkins University Press, Baltimore, 1998.   Google Scholar
[11]

B. Simon, What are the most significant aspects of supporting the circular economy in the plastic industry?, Resources, Conserv. Recy., 141 (2019), 299-300.   Google Scholar

[12]

L. SunH. LiL. DongK. FangJ.Z. RenY. GengM. FujiiW. ZhangN. Zhang and Z. Liu, Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: a case of Liuzhou city, China. Resources, Conserv. Recy., 119 (2017), 78-88.   Google Scholar

[13]

H. WuY. LiuQ. Xia and W. Zhu, Measuring efficiency of recycling systems based on data envelopment analysis (DEA) network: A case from Chinese provincial circular economy, Environ. Eng. Manag. J., 13 (2014), 1089-1099.   Google Scholar

[14]

L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets Syst., 1 (1978), 3-28.  doi: 10.1016/0165-0114(78)90029-5.  Google Scholar

[15]

H. Z. Zimmermann, Fuzzy Set Theory and Its Applications, Kluwer-Nijhoff, Boston, 1996. doi: 10.1007/978-94-015-7153-1.  Google Scholar

show all references

References:
[1]

L. CastelliR. Pesenti and W. Ukovich, DEA-like models for the efficiency evaluation of hierarchically structured units, Eur. J. Oper. Res., 154 (2004), 465-476.  doi: 10.1016/S0377-2217(03)00182-6.  Google Scholar

[2]

A. Charnes and W. W. Cooper, Programming with linear fractional functionals, Nav. Res. Logist. Q., 9 (1962), 181-186.  doi: 10.1002/nav.3800090303.  Google Scholar

[3]

A. CharnesW. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, Eur. J. Oper. Res., 2 (1978), 429-444.  doi: 10.1016/0377-2217(78)90138-8.  Google Scholar

[4]

Y. ChenJ. DuS. H. David and J. Zhu, DEA model with shared resources and efficiency decomposition, Eur. J. Oper. Res., 207 (2010), 339-349.  doi: 10.1016/j.ejor.2010.03.031.  Google Scholar

[5]

W. ChenW. J. LiuY. GengS. OhnishiL. SunW. Y. HanX. Tian and S. Z. Zhong, Life cycle based emergy analysis on China's cement production, J. Clean. Prod., 131 (2016), 1-8.   Google Scholar

[6]

W. D. Cook and L. M. Seiford, Data envelopment analysis (DEA)-Thirty years on, Eur. J. Oper. Res., 192 (2009), 1-17.  doi: 10.1016/j.ejor.2008.01.032.  Google Scholar

[7]

R. F$\ddot{a}$re and S. Grosskopf, Network DEA, Socio. Econ. Plann. Sci., 4 (2000), 35-49.   Google Scholar

[8]

C. Kao and S. T. Liu, Fuzzy efficiency measures in data envelopment analysis, Fuzzy Sets Syst., 113 (2000), 427-437.   Google Scholar

[9]

H. MikulcicH. CabezasM. Vujanovic and N. Duic, Environmental assessment of different cement manufacturing processes based on emergy and ecological footprint analysis, J. Clean. Prod., 130 (2016), 1-25.   Google Scholar

[10] D. Pearce and R. K. Turner, Economics of Natural Resources and the Environment, The Johns Hopkins University Press, Baltimore, 1998.   Google Scholar
[11]

B. Simon, What are the most significant aspects of supporting the circular economy in the plastic industry?, Resources, Conserv. Recy., 141 (2019), 299-300.   Google Scholar

[12]

L. SunH. LiL. DongK. FangJ.Z. RenY. GengM. FujiiW. ZhangN. Zhang and Z. Liu, Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: a case of Liuzhou city, China. Resources, Conserv. Recy., 119 (2017), 78-88.   Google Scholar

[13]

H. WuY. LiuQ. Xia and W. Zhu, Measuring efficiency of recycling systems based on data envelopment analysis (DEA) network: A case from Chinese provincial circular economy, Environ. Eng. Manag. J., 13 (2014), 1089-1099.   Google Scholar

[14]

L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets Syst., 1 (1978), 3-28.  doi: 10.1016/0165-0114(78)90029-5.  Google Scholar

[15]

H. Z. Zimmermann, Fuzzy Set Theory and Its Applications, Kluwer-Nijhoff, Boston, 1996. doi: 10.1007/978-94-015-7153-1.  Google Scholar

Figure 1.  A recycling production system
Figure 2.  Notations of a recycling production system
Table 1.  Data set for assessing the recycling production system of EU countries
DMU $ X^1_1 $ $ X^1_2 $ $ X^1_3 $ $ Y^{1g} $ $ Y^{1b} $ $ X^2 $ $ Y^{2b}_1 $ $ Y^{2b}_2 $ $ Y^{2g}_1 $ $ Y^{2g}_2 $ $ Y^{2g}_3 $
BE $ 5004 $ $ 109635 $ $ 36332 $ $ 46000 $ $ 63150004 $ $ 2246 $ $ 401821505 $ $ 260944420 $ $ 4855292916 $ $ 0 $ $ 796941524 $
BG $ 4025 $ $ 9889 $ $ 9662 $ $ 20900 $ $ 120510053 $ $ 262 $ $ 11377402360 $ $ 1228940 $ $ 624743431 $ $ 0 $ $ 47630543 $
CZ $ 5387 $ $ 48753 $ $ 24880 $ $ 34200 $ $ 25380325 $ $ 489 $ $ 421402923 $ $ 8969823 $ $ 1256506220 $ $ 736788139 $ $ 114365359 $
DK $ 3024 $ $ 62642 $ $ 14449 $ $ 49300 $ $ 20981701 $ $ 73 $ $ 611036025 $ $ 453589 $ $ 1077685765 $ $ 0 $ $ 408994682 $
DE $ 43294 $ $ 696913 $ $ 216447 $ $ 49800 $ $ 400049839 $ $ 5139 $ $ 7258425559 $ $ 474079860 $ $ 17091404085 $ $ 10641085528 $ $ 4539988852 $
EE $ 694 $ $ 5212 $ $ 2818 $ $ 30200 $ $ 24277641 $ $ 39 $ $ 1571046418 $ $ 7207 $ $ 523501743 $ $ 271321686 $ $ 61887076 $
IE $ 2248 $ $ 97003 $ $ 11609 $ $ 69100 $ $ 15483387 $ $ 11 $ $ 595176663 $ $ 3974931 $ $ 163521509 $ $ 712096348 $ $ 73569252 $
EL $ 4906 $ $ 22630 $ $ 16702 $ $ 27400 $ $ 69009312 $ $ 1045 $ $ 6101405554 $ $ 2254867 $ $ 223834033 $ $ 559291350 $ $ 14145383 $
ES $ 23016 $ $ 247385 $ $ 82497 $ $ 37200 $ $ 128946782 $ $ 5561 $ $ 6917730969 $ $ 1630152 $ $ 4782727890 $ $ 729903060 $ $ 462686172 $
FR $ 30319 $ $ 539810 $ $ 147158 $ $ 43200 $ $ 323467567 $ $ 10927(p) $ $ 8912319950 $ $ 529931991 $ $ 17805492324 $ $ 3347460780 $ $ 1751551681 $
HR $ 1833 $ $ 10352 $ $ 6639 $ $ 23800 $ $ 5280553 $ $ 3 $ $ 252644927 $ $ 8025 $ $ 248979558 $ $ 21330946 $ $ 5091818 $
IT $ 25584 $ $ 318657 $ $ 115930 $ $ 37600 $ $ 163997388 $ $ 10323 $ $ 2330759325 $ $ 448068861 $ $ 12940757588 $ $ 16749969 $ $ 663403006 $
CY $ 611 $ $ 3610 $ $ 1758 $ $ 36100 $ $ 3384016 $ $ 37 $ $ 195647721 $ $ 0 $ $ 35308927 $ $ 94608345 $ $ 12836602 $
LV $ 1008 $ $ 5019 $ $ 3820 $ $ 26200 $ $ 2531726 $ $ 86 $ $ 51514453 $ $ 27299 $ $ 181524359 $ $ 2877570 $ $ 17228886 $
LT $ 1481 $ $ 8090 $ $ 5108 $ $ 30700 $ $ 6645689 $ $ 146 $ $ 376219111 $ $ 265115 $ $ 222175413 $ $ 27546012 $ $ 38363239 $
LU $ 281 $ $ 10079 $ $ 4038 $ $ 105400 $ $ 10129884 $ $ 136 $ $ 394682009 $ $ 447 $ $ 352026252 $ $ 244913566 $ $ 21366130 $
HU $ 4686 $ $ 24195 $ $ 17865 $ $ 28300 $ $ 15908526 $ $ 159 $ $ 544534135 $ $ 9173793 $ $ 861341728 $ $ 58137346 $ $ 117665638 $
MT $ 212 $ $ 2613 $ $ 583 $ $ 40100 $ $ 1971253 $ $ 58 $ $ 33840198 $ $ 729659 $ $ 37642029 $ $ 124913458 $ $ 0 $
NL $ 9050 $ $ 154915 $ $ 49517 $ $ 52800 $ $ 141027997 $ $ 3827 $ $ 6484656382 $ $ 123312495 $ $ 6429380745 $ $ 0 $ $ 1065450090 $
AT $ 4535 $ $ 90187 $ $ 28127 $ $ 49000 $ $ 61226583 $ $ 174 $ $ 2809451363 $ $ \tilde{Y}^{2b}_2 $ $ 2264108063 $ $ 675844441 $ $ \tilde{Y}^{2g}_3 $
PL $ 18393 $ $ 84961 $ $ 66652 $ $ 28300 $ $ 181990641 $ $ 372 $ $ 5095006125 $ $ 63893549 $ $ 8399307294 $ $ 4036605469 $ $ 604251699 $
PT $ 5207 $ $ 31296 $ $ 16114 $ $ 29600 $ $ 14734417 $ $ 425.5(e) $ $ 510697523 $ $ 3546142 $ $ 640596720 $ $ 140172510 $ $ 178428819 $
RO $ 8939 $ $ 43109 $ $ 22280 $ $ 22900 $ $ 177557398 $ $ 508 $ $ 16702885666 $ $ 10101348 $ $ 714524681 $ $ 77559190 $ $ 250668909 $
SI $ 996 $ $ 7859 $ $ 4875 $ $ 32900 $ $ 5517787 $ $ 42 $ $ 38252271 $ $ 4285174 $ $ 332376636 $ $ 150325015 $ $ 26539590 $
SK $ 2762 $ $ 19021 $ $ 10418 $ $ 32000 $ $ 10606352 $ $ 319.7(p) $ $ 506588801 $ $ 4865030 $ $ 424682144 $ $ 49836276 $ $ 74662989 $
FI $ 2687 $ $ 51490 $ $ 25248 $ $ 43400 $ $ 122869413 $ $ 75 $ $ 10816368847 $ $ 5368598 $ $ 908084245 $ $ 0 $ $ 557119580 $
SE $ 5245 $ $ 123749 $ $ 32590 $ $ 50800 $ $ 141622198 $ $ 760 $ $ 10806010637 $ $ 22813777 $ $ 1702475279 $ $ 694274083 $ $ 936645999 $
UK $ 33693 $ $ 437140 $ $ 133688 $ $ 43800 $ $ 277272474 $ $ 13601 $ $ 10410809602 $ $ 735540574 $ $ 13457214835 $ $ 2175093717 $ $ 948588194 $
1. BE: Belgium; BG: Bulgaria; CZ: Czechia; DK: Denmark; DE: Germany; EE: Estonia; IE: Ireland; EL: Greece; ES: Spain; FR: France; HR: Croatia; IT: Italy; CY: Cyprus; LV: Latvia; LT: Lithuania; LU: Luxembourg; HU: Hungary; MT: Malta; NL: Netherlands; AT: Austria; PL: Poland; PT: Portugal; RO: Romania; SI: Slovenia; SK: Slovakia; FI: Finland; SE: Sweden; UK: United Kingdom
2. Available flags: p: provisional; e: estimated
DMU $ X^1_1 $ $ X^1_2 $ $ X^1_3 $ $ Y^{1g} $ $ Y^{1b} $ $ X^2 $ $ Y^{2b}_1 $ $ Y^{2b}_2 $ $ Y^{2g}_1 $ $ Y^{2g}_2 $ $ Y^{2g}_3 $
BE $ 5004 $ $ 109635 $ $ 36332 $ $ 46000 $ $ 63150004 $ $ 2246 $ $ 401821505 $ $ 260944420 $ $ 4855292916 $ $ 0 $ $ 796941524 $
BG $ 4025 $ $ 9889 $ $ 9662 $ $ 20900 $ $ 120510053 $ $ 262 $ $ 11377402360 $ $ 1228940 $ $ 624743431 $ $ 0 $ $ 47630543 $
CZ $ 5387 $ $ 48753 $ $ 24880 $ $ 34200 $ $ 25380325 $ $ 489 $ $ 421402923 $ $ 8969823 $ $ 1256506220 $ $ 736788139 $ $ 114365359 $
DK $ 3024 $ $ 62642 $ $ 14449 $ $ 49300 $ $ 20981701 $ $ 73 $ $ 611036025 $ $ 453589 $ $ 1077685765 $ $ 0 $ $ 408994682 $
DE $ 43294 $ $ 696913 $ $ 216447 $ $ 49800 $ $ 400049839 $ $ 5139 $ $ 7258425559 $ $ 474079860 $ $ 17091404085 $ $ 10641085528 $ $ 4539988852 $
EE $ 694 $ $ 5212 $ $ 2818 $ $ 30200 $ $ 24277641 $ $ 39 $ $ 1571046418 $ $ 7207 $ $ 523501743 $ $ 271321686 $ $ 61887076 $
IE $ 2248 $ $ 97003 $ $ 11609 $ $ 69100 $ $ 15483387 $ $ 11 $ $ 595176663 $ $ 3974931 $ $ 163521509 $ $ 712096348 $ $ 73569252 $
EL $ 4906 $ $ 22630 $ $ 16702 $ $ 27400 $ $ 69009312 $ $ 1045 $ $ 6101405554 $ $ 2254867 $ $ 223834033 $ $ 559291350 $ $ 14145383 $
ES $ 23016 $ $ 247385 $ $ 82497 $ $ 37200 $ $ 128946782 $ $ 5561 $ $ 6917730969 $ $ 1630152 $ $ 4782727890 $ $ 729903060 $ $ 462686172 $
FR $ 30319 $ $ 539810 $ $ 147158 $ $ 43200 $ $ 323467567 $ $ 10927(p) $ $ 8912319950 $ $ 529931991 $ $ 17805492324 $ $ 3347460780 $ $ 1751551681 $
HR $ 1833 $ $ 10352 $ $ 6639 $ $ 23800 $ $ 5280553 $ $ 3 $ $ 252644927 $ $ 8025 $ $ 248979558 $ $ 21330946 $ $ 5091818 $
IT $ 25584 $ $ 318657 $ $ 115930 $ $ 37600 $ $ 163997388 $ $ 10323 $ $ 2330759325 $ $ 448068861 $ $ 12940757588 $ $ 16749969 $ $ 663403006 $
CY $ 611 $ $ 3610 $ $ 1758 $ $ 36100 $ $ 3384016 $ $ 37 $ $ 195647721 $ $ 0 $ $ 35308927 $ $ 94608345 $ $ 12836602 $
LV $ 1008 $ $ 5019 $ $ 3820 $ $ 26200 $ $ 2531726 $ $ 86 $ $ 51514453 $ $ 27299 $ $ 181524359 $ $ 2877570 $ $ 17228886 $
LT $ 1481 $ $ 8090 $ $ 5108 $ $ 30700 $ $ 6645689 $ $ 146 $ $ 376219111 $ $ 265115 $ $ 222175413 $ $ 27546012 $ $ 38363239 $
LU $ 281 $ $ 10079 $ $ 4038 $ $ 105400 $ $ 10129884 $ $ 136 $ $ 394682009 $ $ 447 $ $ 352026252 $ $ 244913566 $ $ 21366130 $
HU $ 4686 $ $ 24195 $ $ 17865 $ $ 28300 $ $ 15908526 $ $ 159 $ $ 544534135 $ $ 9173793 $ $ 861341728 $ $ 58137346 $ $ 117665638 $
MT $ 212 $ $ 2613 $ $ 583 $ $ 40100 $ $ 1971253 $ $ 58 $ $ 33840198 $ $ 729659 $ $ 37642029 $ $ 124913458 $ $ 0 $
NL $ 9050 $ $ 154915 $ $ 49517 $ $ 52800 $ $ 141027997 $ $ 3827 $ $ 6484656382 $ $ 123312495 $ $ 6429380745 $ $ 0 $ $ 1065450090 $
AT $ 4535 $ $ 90187 $ $ 28127 $ $ 49000 $ $ 61226583 $ $ 174 $ $ 2809451363 $ $ \tilde{Y}^{2b}_2 $ $ 2264108063 $ $ 675844441 $ $ \tilde{Y}^{2g}_3 $
PL $ 18393 $ $ 84961 $ $ 66652 $ $ 28300 $ $ 181990641 $ $ 372 $ $ 5095006125 $ $ 63893549 $ $ 8399307294 $ $ 4036605469 $ $ 604251699 $
PT $ 5207 $ $ 31296 $ $ 16114 $ $ 29600 $ $ 14734417 $ $ 425.5(e) $ $ 510697523 $ $ 3546142 $ $ 640596720 $ $ 140172510 $ $ 178428819 $
RO $ 8939 $ $ 43109 $ $ 22280 $ $ 22900 $ $ 177557398 $ $ 508 $ $ 16702885666 $ $ 10101348 $ $ 714524681 $ $ 77559190 $ $ 250668909 $
SI $ 996 $ $ 7859 $ $ 4875 $ $ 32900 $ $ 5517787 $ $ 42 $ $ 38252271 $ $ 4285174 $ $ 332376636 $ $ 150325015 $ $ 26539590 $
SK $ 2762 $ $ 19021 $ $ 10418 $ $ 32000 $ $ 10606352 $ $ 319.7(p) $ $ 506588801 $ $ 4865030 $ $ 424682144 $ $ 49836276 $ $ 74662989 $
FI $ 2687 $ $ 51490 $ $ 25248 $ $ 43400 $ $ 122869413 $ $ 75 $ $ 10816368847 $ $ 5368598 $ $ 908084245 $ $ 0 $ $ 557119580 $
SE $ 5245 $ $ 123749 $ $ 32590 $ $ 50800 $ $ 141622198 $ $ 760 $ $ 10806010637 $ $ 22813777 $ $ 1702475279 $ $ 694274083 $ $ 936645999 $
UK $ 33693 $ $ 437140 $ $ 133688 $ $ 43800 $ $ 277272474 $ $ 13601 $ $ 10410809602 $ $ 735540574 $ $ 13457214835 $ $ 2175093717 $ $ 948588194 $
1. BE: Belgium; BG: Bulgaria; CZ: Czechia; DK: Denmark; DE: Germany; EE: Estonia; IE: Ireland; EL: Greece; ES: Spain; FR: France; HR: Croatia; IT: Italy; CY: Cyprus; LV: Latvia; LT: Lithuania; LU: Luxembourg; HU: Hungary; MT: Malta; NL: Netherlands; AT: Austria; PL: Poland; PT: Portugal; RO: Romania; SI: Slovenia; SK: Slovakia; FI: Finland; SE: Sweden; UK: United Kingdom
2. Available flags: p: provisional; e: estimated
Table 2.  $ \alpha $-cuts of the fuzzy system efficiencies
DMU System Sub-system 1 Sub-system 2
Belgium (0.4029, 0.4185) (0.0014, 0.0018) (0.9593, 1.0000)
Bulgaria (0.1067, 0.1376) (0.1077, 0.1377) (0.0272, 0.0309)
Czechia (0.3176, 0.3177) (0.0678, 0.0734) (0.9328, 0.9433)
Denmark (0.4708, 0.5354) (0.0907, 0.1084) (1.0000, 1.0000)
Germany (0.2082, 0.2963) (0.0024, 0.0032) (0.5834, 0.6320)
Estonia (0.6148, 0.6150) (0.2746, 0.2897) (0.9908, 1.0000)
Ireland (0.6397, 0.6433) (0.3472, 0.3494) (1.0000, 1.0000)
Greece (0.0768, 0.0788) (0.0756, 0.0789) (0.0025, 0.0031)
Spain (0.0159, 0.0252) (0.0285, 0.0433) (0.0155, 0.0243)
France (0.0823, 0.0839) (0.0006, 0.0006) (0.1034, 0.1038)
Croatia (1.0000, 1.0000) (1.0000, 1.0000) (1.0000, 1.0000)
Italy (0.3056, 0.3398) (0.0079, 0.0085) (0.7341, 0.8466)
Cyprus (0.9489, 1.0000) (1.0000, 1.0000) (0.9942, 1.0000)
Latvia (1.0000, 1.0000) (1.0000, 1.0000) (1.0000, 1.0000)
Lithuania (0.2470, 0.2473) (0.2472, 0.2473) (0.0243, 0.0720)
Luxembourg (1.0000, 1.0000) (1.0000, 1.0000) (1.0000, 1.0000)
Hungary (0.1631, 0.1789) (0.0167, 0.0277) (0.2482, 0.2539)
Malta (0.9553, 1.0000) (0.9228, 1.0000) (0.9768, 1.0000)
Netherlands (0.0257, 0.0544) (0.0184, 0.0407) (0.0488, 0.0603)
Austria (0.1721, 0.1732) (0.0723, 0.0746) (0.1936, 0.1965)
Poland (0.4481, 0.4577) (0.0058, 0.0063) (1.0000, 1.0000)
Portugal (0.0616, 0.0839) (0.0038, 0.0047) (0.1947, 0.1913)
Romania (0.0346, 0.0680) (0.0043, 0.0085) (0.0689, 0.0732)
Slovenia (0.6530, 0.6577) (0.3634, 0.3735) (1.0000, 1.0000)
Slovakia (0.1095, 0.1096) (0.1096, 0.1096) (0.0637, 0.0639)
Finland (0.3443, 0.5039) (0.0065, 0.0079) (0.8635, 1.0000)
Sweden (0.1767, 0.1825) (0.0527, 0.0636) (0.1865, 0.2012)
United Kingdom (0.0291, 0.0298) (0.0022, 0.0029) (0.0320, 0.0321)
DMU System Sub-system 1 Sub-system 2
Belgium (0.4029, 0.4185) (0.0014, 0.0018) (0.9593, 1.0000)
Bulgaria (0.1067, 0.1376) (0.1077, 0.1377) (0.0272, 0.0309)
Czechia (0.3176, 0.3177) (0.0678, 0.0734) (0.9328, 0.9433)
Denmark (0.4708, 0.5354) (0.0907, 0.1084) (1.0000, 1.0000)
Germany (0.2082, 0.2963) (0.0024, 0.0032) (0.5834, 0.6320)
Estonia (0.6148, 0.6150) (0.2746, 0.2897) (0.9908, 1.0000)
Ireland (0.6397, 0.6433) (0.3472, 0.3494) (1.0000, 1.0000)
Greece (0.0768, 0.0788) (0.0756, 0.0789) (0.0025, 0.0031)
Spain (0.0159, 0.0252) (0.0285, 0.0433) (0.0155, 0.0243)
France (0.0823, 0.0839) (0.0006, 0.0006) (0.1034, 0.1038)
Croatia (1.0000, 1.0000) (1.0000, 1.0000) (1.0000, 1.0000)
Italy (0.3056, 0.3398) (0.0079, 0.0085) (0.7341, 0.8466)
Cyprus (0.9489, 1.0000) (1.0000, 1.0000) (0.9942, 1.0000)
Latvia (1.0000, 1.0000) (1.0000, 1.0000) (1.0000, 1.0000)
Lithuania (0.2470, 0.2473) (0.2472, 0.2473) (0.0243, 0.0720)
Luxembourg (1.0000, 1.0000) (1.0000, 1.0000) (1.0000, 1.0000)
Hungary (0.1631, 0.1789) (0.0167, 0.0277) (0.2482, 0.2539)
Malta (0.9553, 1.0000) (0.9228, 1.0000) (0.9768, 1.0000)
Netherlands (0.0257, 0.0544) (0.0184, 0.0407) (0.0488, 0.0603)
Austria (0.1721, 0.1732) (0.0723, 0.0746) (0.1936, 0.1965)
Poland (0.4481, 0.4577) (0.0058, 0.0063) (1.0000, 1.0000)
Portugal (0.0616, 0.0839) (0.0038, 0.0047) (0.1947, 0.1913)
Romania (0.0346, 0.0680) (0.0043, 0.0085) (0.0689, 0.0732)
Slovenia (0.6530, 0.6577) (0.3634, 0.3735) (1.0000, 1.0000)
Slovakia (0.1095, 0.1096) (0.1096, 0.1096) (0.0637, 0.0639)
Finland (0.3443, 0.5039) (0.0065, 0.0079) (0.8635, 1.0000)
Sweden (0.1767, 0.1825) (0.0527, 0.0636) (0.1865, 0.2012)
United Kingdom (0.0291, 0.0298) (0.0022, 0.0029) (0.0320, 0.0321)
[1]

Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046

[2]

Cheng-Kai Hu, Fung-Bao Liu, Cheng-Feng Hu. Efficiency measures in fuzzy data envelopment analysis with common weights. Journal of Industrial & Management Optimization, 2017, 13 (1) : 237-249. doi: 10.3934/jimo.2016014

[3]

Habibe Zare Haghighi, Sajad Adeli, Farhad Hosseinzadeh Lotfi, Gholam Reza Jahanshahloo. Revenue congestion: An application of data envelopment analysis. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1311-1322. doi: 10.3934/jimo.2016.12.1311

[4]

Pooja Bansal, Aparna Mehra. Integrated dynamic interval data envelopment analysis in the presence of integer and negative data. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021023

[5]

Mahdi Mahdiloo, Abdollah Noorizadeh, Reza Farzipoor Saen. Developing a new data envelopment analysis model for customer value analysis. Journal of Industrial & Management Optimization, 2011, 7 (3) : 531-558. doi: 10.3934/jimo.2011.7.531

[6]

Mohammad Afzalinejad, Zahra Abbasi. A slacks-based model for dynamic data envelopment analysis. Journal of Industrial & Management Optimization, 2019, 15 (1) : 275-291. doi: 10.3934/jimo.2018043

[7]

Saber Saati, Adel Hatami-Marbini, Per J. Agrell, Madjid Tavana. A common set of weight approach using an ideal decision making unit in data envelopment analysis. Journal of Industrial & Management Optimization, 2012, 8 (3) : 623-637. doi: 10.3934/jimo.2012.8.623

[8]

Junjie Peng, Ning Chen, Jiayang Dai, Weihua Gui. A goethite process modeling method by Asynchronous Fuzzy Cognitive Network based on an improved constrained chicken swarm optimization algorithm. Journal of Industrial & Management Optimization, 2021, 17 (3) : 1269-1287. doi: 10.3934/jimo.2020021

[9]

Behrouz Kheirfam, Guoqiang Wang. An infeasible full NT-step interior point method for circular optimization. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 171-184. doi: 10.3934/naco.2017011

[10]

Seiyed Hadi Abtahi, Hamidreza Rahimi, Maryam Mosleh. Solving fuzzy volterra-fredholm integral equation by fuzzy artificial neural network. Mathematical Foundations of Computing, 2021, 4 (3) : 209-219. doi: 10.3934/mfc.2021013

[11]

Gang Chen, Zaiming Liu, Jingchuan Zhang. Analysis of strategic customer behavior in fuzzy queueing systems. Journal of Industrial & Management Optimization, 2020, 16 (1) : 371-386. doi: 10.3934/jimo.2018157

[12]

Anna Chiara Lai, Monica Motta. Stabilizability in optimization problems with unbounded data. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2447-2474. doi: 10.3934/dcds.2020371

[13]

Jingzhen Liu, Ka-Fai Cedric Yiu, Tak Kuen Siu, Wai-Ki Ching. Optimal insurance in a changing economy. Mathematical Control & Related Fields, 2014, 4 (2) : 187-202. doi: 10.3934/mcrf.2014.4.187

[14]

Yanqin Bai, Xuerui Gao, Guoqiang Wang. Primal-dual interior-point algorithms for convex quadratic circular cone optimization. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 211-231. doi: 10.3934/naco.2015.5.211

[15]

Liu Hui, Lin Zhi, Waqas Ahmad. Network(graph) data research in the coordinate system. Mathematical Foundations of Computing, 2018, 1 (1) : 1-10. doi: 10.3934/mfc.2018001

[16]

King Hann Lim, Hong Hui Tan, Hendra G. Harno. Approximate greatest descent in neural network optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 327-336. doi: 10.3934/naco.2018021

[17]

Wenjuan Jia, Yingjie Deng, Chenyang Xin, Xiaodong Liu, Witold Pedrycz. A classification algorithm with Linear Discriminant Analysis and Axiomatic Fuzzy Sets. Mathematical Foundations of Computing, 2019, 2 (1) : 73-81. doi: 10.3934/mfc.2019006

[18]

Yung Chung Wang, Jenn Shing Wang, Fu Hsiang Tsai. Analysis of discrete-time space priority queue with fuzzy threshold. Journal of Industrial & Management Optimization, 2009, 5 (3) : 467-479. doi: 10.3934/jimo.2009.5.467

[19]

Jian Luo, Shu-Cherng Fang, Yanqin Bai, Zhibin Deng. Fuzzy quadratic surface support vector machine based on fisher discriminant analysis. Journal of Industrial & Management Optimization, 2016, 12 (1) : 357-373. doi: 10.3934/jimo.2016.12.357

[20]

Mark G. Burch, Karly A. Jacobsen, Joseph H. Tien, Grzegorz A. Rempała. Network-based analysis of a small Ebola outbreak. Mathematical Biosciences & Engineering, 2017, 14 (1) : 67-77. doi: 10.3934/mbe.2017005

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]