
-
Previous Article
An active set solver for constrained $ H_\infty $ optimal control problems with state and input constraints
- NACO Home
- This Issue
-
Next Article
Optimal pre-sale policy for deteriorating items
Optimality and duality for complex multi-objective programming
1. | No. 100, Wenhwa Road, Seatweeen, Department of Applied Mathematics, Feng Chia University, Taichung, 40724, Taiwan |
2. | Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan |
We consider a complex multi-objective programming problem (CMP). In order to establish the optimality conditions of problem (CMP), we introduce several properties of optimal efficient solutions and scalarization techniques. Furthermore, a certain parametric dual model is discussed, and their duality theorems are proved.
References:
[1] |
R. A. Abrams,
Nonlinear programming in complex space: sufficient conditions and duality, J. Math. Anal. Appl., 38 (1972), 619-632.
doi: 10.1016/0022-247X(72)90073-X. |
[2] |
R. A. Abrams and A. Ben-Israel, Complex mathematical programming, Developments in Operations Research (eds. B. Avi-Itzhak, Gordon and Breach), New York, (1971), 3–20. |
[3] |
R. A. Abrams and A. Ben-Israel,
Nonlinear programming in complex space: necessary conditions, SIAM J. Control., 9 (1971), 606-620.
|
[4] |
N. Datta and D. Bhatia,
Duality for a class of nondifferentiable mathematical programming problems in complex space, J. Math. Anal. Appl., 101 (1984), 1-11.
doi: 10.1016/0022-247X(84)90053-2. |
[5] |
D. I. Duca, On vectorial programming problem in complex space, Studia Univ. Babeș-Bolyai Math., 24 (1979), 51–56. |
[6] |
D. I. Duca, Proper efficiency in the complex vectorial programming, Studia Univ. Babeș-Bolyai Math., 25 (1980), 73–80. |
[7] |
D. I. Duca, Efficiency criteria in vectorial programming in complex space without convexity, Cahiers Centre Études Rech. Opér., 26 (1984), 217–226. |
[8] |
D. I. Duca, Multicriteria Optimization in Complex Space, Casa Cǎrţii de Ştiinţǎ, Cluj-Napoca, 2005. |
[9] |
M. E. Elbrolosy,
Efficiency for a generalized form of vector optimization problems in complex space, Optimization, 65 (2016), 1245-1257.
doi: 10.1080/02331934.2015.1104680. |
[10] |
O. Ferrero,
On nonlinear programming in complex spaces, J. Math. Anal. Appl., 164 (1992), 399-416.
doi: 10.1016/0022-247X(92)90123-U. |
[11] |
H. C. Lai and T. Y. Huang,
Optimality conditions for a nondifferentiable minimax programming in complex spaces, Nonlinear Anal., 71 (2009), 1205-1212.
doi: 10.1016/j.na.2008.11.053. |
[12] |
H. C. Lai and T. Y. Huang,
Optimality conditions for nondifferentiable minimax fractional programming with complex variables, J. Math. Anal. Appl., 359 (2009), 229-239.
doi: 10.1016/j.jmaa.2009.05.049. |
[13] |
H. C. Lai and T. Y. Huang,
Nondifferentiable minimax fractional programming in complex spaces with parametric duality, J. Global Optim., 53 (2012), 243-254.
doi: 10.1007/s10898-011-9680-7. |
[14] |
H. C. Lai and T. Y. Huang,
Mixed type duality for a nondifferentiable minimax fractional complex programming, Pacific J. Optim., 10 (2014), 305-319.
|
[15] |
H. C. Lai and J. C. Liu, Duality for nondifferentiable minimax programming in complex spaces, Nonlinear Anal., 71 (2009), e224–e233.
doi: 10.1016/j.na.2008.10.062. |
[16] |
N. Levinson,
Linear programming in complex space, J. Math. Anal. Appl., 14 (1966), 44-62.
doi: 10.1016/0022-247X(66)90061-8. |
[17] |
B. Mond and B. D. Craven,
A class of nondifferentiable complex programming problems, J. Math. Oper. and Stat., 6 (1975), 581-591.
doi: 10.1007/bf01966096. |
[18] |
I. M. Stancu-Minasian, D. I. Duca and T. Nishida,
Multiple objective linear fractional optimization in complex space, Math. Japonica., 35 (1990), 195-203.
|
[19] |
Y. Sawaragi, H. Nakayama and T. Tanino, Theory of Multiobjective Optimization, Academic Press, Orlando, FL, 1985.
![]() ![]() |
[20] |
E. A. Youness and M. E. Elbrolosy,
Extension to necessary optimality conditions in complex programming, Appl. Math. Comput., 154 (2004), 229-237.
doi: 10.1016/S0096-3003(03)00706-9. |
[21] |
E. A. Youness and M. E. Elbrolosy,
Extension to sufficient optimality conditions in complex programming, J. Math. Stat., 1 (2005), 40-48.
doi: 10.3844/jmssp.2005.40.48. |
show all references
References:
[1] |
R. A. Abrams,
Nonlinear programming in complex space: sufficient conditions and duality, J. Math. Anal. Appl., 38 (1972), 619-632.
doi: 10.1016/0022-247X(72)90073-X. |
[2] |
R. A. Abrams and A. Ben-Israel, Complex mathematical programming, Developments in Operations Research (eds. B. Avi-Itzhak, Gordon and Breach), New York, (1971), 3–20. |
[3] |
R. A. Abrams and A. Ben-Israel,
Nonlinear programming in complex space: necessary conditions, SIAM J. Control., 9 (1971), 606-620.
|
[4] |
N. Datta and D. Bhatia,
Duality for a class of nondifferentiable mathematical programming problems in complex space, J. Math. Anal. Appl., 101 (1984), 1-11.
doi: 10.1016/0022-247X(84)90053-2. |
[5] |
D. I. Duca, On vectorial programming problem in complex space, Studia Univ. Babeș-Bolyai Math., 24 (1979), 51–56. |
[6] |
D. I. Duca, Proper efficiency in the complex vectorial programming, Studia Univ. Babeș-Bolyai Math., 25 (1980), 73–80. |
[7] |
D. I. Duca, Efficiency criteria in vectorial programming in complex space without convexity, Cahiers Centre Études Rech. Opér., 26 (1984), 217–226. |
[8] |
D. I. Duca, Multicriteria Optimization in Complex Space, Casa Cǎrţii de Ştiinţǎ, Cluj-Napoca, 2005. |
[9] |
M. E. Elbrolosy,
Efficiency for a generalized form of vector optimization problems in complex space, Optimization, 65 (2016), 1245-1257.
doi: 10.1080/02331934.2015.1104680. |
[10] |
O. Ferrero,
On nonlinear programming in complex spaces, J. Math. Anal. Appl., 164 (1992), 399-416.
doi: 10.1016/0022-247X(92)90123-U. |
[11] |
H. C. Lai and T. Y. Huang,
Optimality conditions for a nondifferentiable minimax programming in complex spaces, Nonlinear Anal., 71 (2009), 1205-1212.
doi: 10.1016/j.na.2008.11.053. |
[12] |
H. C. Lai and T. Y. Huang,
Optimality conditions for nondifferentiable minimax fractional programming with complex variables, J. Math. Anal. Appl., 359 (2009), 229-239.
doi: 10.1016/j.jmaa.2009.05.049. |
[13] |
H. C. Lai and T. Y. Huang,
Nondifferentiable minimax fractional programming in complex spaces with parametric duality, J. Global Optim., 53 (2012), 243-254.
doi: 10.1007/s10898-011-9680-7. |
[14] |
H. C. Lai and T. Y. Huang,
Mixed type duality for a nondifferentiable minimax fractional complex programming, Pacific J. Optim., 10 (2014), 305-319.
|
[15] |
H. C. Lai and J. C. Liu, Duality for nondifferentiable minimax programming in complex spaces, Nonlinear Anal., 71 (2009), e224–e233.
doi: 10.1016/j.na.2008.10.062. |
[16] |
N. Levinson,
Linear programming in complex space, J. Math. Anal. Appl., 14 (1966), 44-62.
doi: 10.1016/0022-247X(66)90061-8. |
[17] |
B. Mond and B. D. Craven,
A class of nondifferentiable complex programming problems, J. Math. Oper. and Stat., 6 (1975), 581-591.
doi: 10.1007/bf01966096. |
[18] |
I. M. Stancu-Minasian, D. I. Duca and T. Nishida,
Multiple objective linear fractional optimization in complex space, Math. Japonica., 35 (1990), 195-203.
|
[19] |
Y. Sawaragi, H. Nakayama and T. Tanino, Theory of Multiobjective Optimization, Academic Press, Orlando, FL, 1985.
![]() ![]() |
[20] |
E. A. Youness and M. E. Elbrolosy,
Extension to necessary optimality conditions in complex programming, Appl. Math. Comput., 154 (2004), 229-237.
doi: 10.1016/S0096-3003(03)00706-9. |
[21] |
E. A. Youness and M. E. Elbrolosy,
Extension to sufficient optimality conditions in complex programming, J. Math. Stat., 1 (2005), 40-48.
doi: 10.3844/jmssp.2005.40.48. |

[1] |
Nguyen Thi Toan. Generalized Clarke epiderivatives of the extremum multifunction to a multi-objective parametric discrete optimal control problem. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021088 |
[2] |
Xiuhong Chen, Zhihua Li. On optimality conditions and duality for non-differentiable interval-valued programming problems with the generalized (F, ρ)-convexity. Journal of Industrial and Management Optimization, 2018, 14 (3) : 895-912. doi: 10.3934/jimo.2017081 |
[3] |
Tien-Fu Liang, Hung-Wen Cheng. Multi-objective aggregate production planning decisions using two-phase fuzzy goal programming method. Journal of Industrial and Management Optimization, 2011, 7 (2) : 365-383. doi: 10.3934/jimo.2011.7.365 |
[4] |
Ya Liu, Zhaojin Li. Dynamic-programming-based heuristic for multi-objective operating theater planning. Journal of Industrial and Management Optimization, 2022, 18 (1) : 111-135. doi: 10.3934/jimo.2020145 |
[5] |
Azam Moradi, Jafar Razmi, Reza Babazadeh, Ali Sabbaghnia. An integrated Principal Component Analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertainty. Journal of Industrial and Management Optimization, 2019, 15 (2) : 855-879. doi: 10.3934/jimo.2018074 |
[6] |
Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1651-1663. doi: 10.3934/jimo.2021037 |
[7] |
Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial and Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130 |
[8] |
Zhongqiang Wu, Zongkui Xie. A multi-objective lion swarm optimization based on multi-agent. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022001 |
[9] |
Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial and Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789 |
[10] |
Jian Xiong, Zhongbao Zhou, Ke Tian, Tianjun Liao, Jianmai Shi. A multi-objective approach for weapon selection and planning problems in dynamic environments. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1189-1211. doi: 10.3934/jimo.2016068 |
[11] |
Dušan M. Stipanović, Claire J. Tomlin, George Leitmann. A note on monotone approximations of minimum and maximum functions and multi-objective problems. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 487-493. doi: 10.3934/naco.2011.1.487 |
[12] |
Hamed Fazlollahtabar, Mohammad Saidi-Mehrabad. Optimizing multi-objective decision making having qualitative evaluation. Journal of Industrial and Management Optimization, 2015, 11 (3) : 747-762. doi: 10.3934/jimo.2015.11.747 |
[13] |
Yuan-mei Xia, Xin-min Yang, Ke-quan Zhao. A combined scalarization method for multi-objective optimization problems. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2669-2683. doi: 10.3934/jimo.2020088 |
[14] |
Xia Zhao, Jianping Dou. Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1263-1288. doi: 10.3934/jimo.2018095 |
[15] |
Shungen Luo, Xiuping Guo. Multi-objective optimization of multi-microgrid power dispatch under uncertainties using interval optimization. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021208 |
[16] |
Xian-Jun Long, Jing Quan. Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 361-370. doi: 10.3934/naco.2011.1.361 |
[17] |
Adriel Cheng, Cheng-Chew Lim. Optimizing system-on-chip verifications with multi-objective genetic evolutionary algorithms. Journal of Industrial and Management Optimization, 2014, 10 (2) : 383-396. doi: 10.3934/jimo.2014.10.383 |
[18] |
Han Yang, Jia Yue, Nan-jing Huang. Multi-objective robust cross-market mixed portfolio optimization under hierarchical risk integration. Journal of Industrial and Management Optimization, 2020, 16 (2) : 759-775. doi: 10.3934/jimo.2018177 |
[19] |
Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial and Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009 |
[20] |
Zongmin Li, Jiuping Xu, Wenjing Shen, Benjamin Lev, Xiao Lei. Bilevel multi-objective construction site security planning with twofold random phenomenon. Journal of Industrial and Management Optimization, 2015, 11 (2) : 595-617. doi: 10.3934/jimo.2015.11.595 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]