We consider a complex multi-objective programming problem (CMP). In order to establish the optimality conditions of problem (CMP), we introduce several properties of optimal efficient solutions and scalarization techniques. Furthermore, a certain parametric dual model is discussed, and their duality theorems are proved.
Citation: |
[1] |
R. A. Abrams, Nonlinear programming in complex space: sufficient conditions and duality, J. Math. Anal. Appl., 38 (1972), 619-632.
doi: 10.1016/0022-247X(72)90073-X.![]() ![]() ![]() |
[2] |
R. A. Abrams and A. Ben-Israel, Complex mathematical programming, Developments in Operations Research (eds. B. Avi-Itzhak, Gordon and Breach), New York, (1971), 3–20.
![]() |
[3] |
R. A. Abrams and A. Ben-Israel, Nonlinear programming in complex space: necessary conditions, SIAM J. Control., 9 (1971), 606-620.
![]() ![]() |
[4] |
N. Datta and D. Bhatia, Duality for a class of nondifferentiable mathematical programming problems in complex space, J. Math. Anal. Appl., 101 (1984), 1-11.
doi: 10.1016/0022-247X(84)90053-2.![]() ![]() ![]() |
[5] |
D. I. Duca, On vectorial programming problem in complex space, Studia Univ. Babeș-Bolyai Math., 24 (1979), 51–56.
![]() ![]() |
[6] |
D. I. Duca, Proper efficiency in the complex vectorial programming, Studia Univ. Babeș-Bolyai Math., 25 (1980), 73–80.
![]() ![]() |
[7] |
D. I. Duca, Efficiency criteria in vectorial programming in complex space without convexity, Cahiers Centre Études Rech. Opér., 26 (1984), 217–226.
![]() ![]() |
[8] |
D. I. Duca, Multicriteria Optimization in Complex Space, Casa Cǎrţii de Ştiinţǎ, Cluj-Napoca, 2005.
![]() |
[9] |
M. E. Elbrolosy, Efficiency for a generalized form of vector optimization problems in complex space, Optimization, 65 (2016), 1245-1257.
doi: 10.1080/02331934.2015.1104680.![]() ![]() ![]() |
[10] |
O. Ferrero, On nonlinear programming in complex spaces, J. Math. Anal. Appl., 164 (1992), 399-416.
doi: 10.1016/0022-247X(92)90123-U.![]() ![]() ![]() |
[11] |
H. C. Lai and T. Y. Huang, Optimality conditions for a nondifferentiable minimax programming in complex spaces, Nonlinear Anal., 71 (2009), 1205-1212.
doi: 10.1016/j.na.2008.11.053.![]() ![]() ![]() |
[12] |
H. C. Lai and T. Y. Huang, Optimality conditions for nondifferentiable minimax fractional programming with complex variables, J. Math. Anal. Appl., 359 (2009), 229-239.
doi: 10.1016/j.jmaa.2009.05.049.![]() ![]() ![]() |
[13] |
H. C. Lai and T. Y. Huang, Nondifferentiable minimax fractional programming in complex spaces with parametric duality, J. Global Optim., 53 (2012), 243-254.
doi: 10.1007/s10898-011-9680-7.![]() ![]() ![]() |
[14] |
H. C. Lai and T. Y. Huang, Mixed type duality for a nondifferentiable minimax fractional complex programming, Pacific J. Optim., 10 (2014), 305-319.
![]() ![]() |
[15] |
H. C. Lai and J. C. Liu, Duality for nondifferentiable minimax programming in complex spaces, Nonlinear Anal., 71 (2009), e224–e233.
doi: 10.1016/j.na.2008.10.062.![]() ![]() ![]() |
[16] |
N. Levinson, Linear programming in complex space, J. Math. Anal. Appl., 14 (1966), 44-62.
doi: 10.1016/0022-247X(66)90061-8.![]() ![]() ![]() |
[17] |
B. Mond and B. D. Craven, A class of nondifferentiable complex programming problems, J. Math. Oper. and Stat., 6 (1975), 581-591.
doi: 10.1007/bf01966096.![]() ![]() ![]() |
[18] |
I. M. Stancu-Minasian, D. I. Duca and T. Nishida, Multiple objective linear fractional optimization in complex space, Math. Japonica., 35 (1990), 195-203.
![]() ![]() |
[19] |
Y. Sawaragi, H. Nakayama and T. Tanino, Theory of Multiobjective Optimization, Academic Press, Orlando, FL, 1985.
![]() ![]() |
[20] |
E. A. Youness and M. E. Elbrolosy, Extension to necessary optimality conditions in complex programming, Appl. Math. Comput., 154 (2004), 229-237.
doi: 10.1016/S0096-3003(03)00706-9.![]() ![]() ![]() |
[21] |
E. A. Youness and M. E. Elbrolosy, Extension to sufficient optimality conditions in complex programming, J. Math. Stat., 1 (2005), 40-48.
doi: 10.3844/jmssp.2005.40.48.![]() ![]() ![]() |
The graphs of Example 2.1