March  2022, 12(1): 121-134. doi: 10.3934/naco.2021055

Optimality and duality for complex multi-objective programming

1. 

No. 100, Wenhwa Road, Seatweeen, Department of Applied Mathematics, Feng Chia University, Taichung, 40724, Taiwan

2. 

Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan

* Corresponding author: Tone-Yau Huang

Received  March 2020 Revised  July 2021 Published  March 2022 Early access  November 2021

Fund Project: The first author is supported by MOST 109-2115-M-035-002, Taiwan

We consider a complex multi-objective programming problem (CMP). In order to establish the optimality conditions of problem (CMP), we introduce several properties of optimal efficient solutions and scalarization techniques. Furthermore, a certain parametric dual model is discussed, and their duality theorems are proved.

Citation: Tone-Yau Huang, Tamaki Tanaka. Optimality and duality for complex multi-objective programming. Numerical Algebra, Control & Optimization, 2022, 12 (1) : 121-134. doi: 10.3934/naco.2021055
References:
[1]

R. A. Abrams, Nonlinear programming in complex space: sufficient conditions and duality, J. Math. Anal. Appl., 38 (1972), 619-632.  doi: 10.1016/0022-247X(72)90073-X.  Google Scholar

[2]

R. A. Abrams and A. Ben-Israel, Complex mathematical programming, Developments in Operations Research (eds. B. Avi-Itzhak, Gordon and Breach), New York, (1971), 3–20. Google Scholar

[3]

R. A. Abrams and A. Ben-Israel, Nonlinear programming in complex space: necessary conditions, SIAM J. Control., 9 (1971), 606-620.   Google Scholar

[4]

N. Datta and D. Bhatia, Duality for a class of nondifferentiable mathematical programming problems in complex space, J. Math. Anal. Appl., 101 (1984), 1-11.  doi: 10.1016/0022-247X(84)90053-2.  Google Scholar

[5]

D. I. Duca, On vectorial programming problem in complex space, Studia Univ. Babeș-Bolyai Math., 24 (1979), 51–56.  Google Scholar

[6]

D. I. Duca, Proper efficiency in the complex vectorial programming, Studia Univ. Babeș-Bolyai Math., 25 (1980), 73–80.  Google Scholar

[7]

D. I. Duca, Efficiency criteria in vectorial programming in complex space without convexity, Cahiers Centre Études Rech. Opér., 26 (1984), 217–226.  Google Scholar

[8]

D. I. Duca, Multicriteria Optimization in Complex Space, Casa Cǎrţii de Ştiinţǎ, Cluj-Napoca, 2005. Google Scholar

[9]

M. E. Elbrolosy, Efficiency for a generalized form of vector optimization problems in complex space, Optimization, 65 (2016), 1245-1257.  doi: 10.1080/02331934.2015.1104680.  Google Scholar

[10]

O. Ferrero, On nonlinear programming in complex spaces, J. Math. Anal. Appl., 164 (1992), 399-416.  doi: 10.1016/0022-247X(92)90123-U.  Google Scholar

[11]

H. C. Lai and T. Y. Huang, Optimality conditions for a nondifferentiable minimax programming in complex spaces, Nonlinear Anal., 71 (2009), 1205-1212.  doi: 10.1016/j.na.2008.11.053.  Google Scholar

[12]

H. C. Lai and T. Y. Huang, Optimality conditions for nondifferentiable minimax fractional programming with complex variables, J. Math. Anal. Appl., 359 (2009), 229-239.  doi: 10.1016/j.jmaa.2009.05.049.  Google Scholar

[13]

H. C. Lai and T. Y. Huang, Nondifferentiable minimax fractional programming in complex spaces with parametric duality, J. Global Optim., 53 (2012), 243-254.  doi: 10.1007/s10898-011-9680-7.  Google Scholar

[14]

H. C. Lai and T. Y. Huang, Mixed type duality for a nondifferentiable minimax fractional complex programming, Pacific J. Optim., 10 (2014), 305-319.   Google Scholar

[15]

H. C. Lai and J. C. Liu, Duality for nondifferentiable minimax programming in complex spaces, Nonlinear Anal., 71 (2009), e224–e233. doi: 10.1016/j.na.2008.10.062.  Google Scholar

[16]

N. Levinson, Linear programming in complex space, J. Math. Anal. Appl., 14 (1966), 44-62.  doi: 10.1016/0022-247X(66)90061-8.  Google Scholar

[17]

B. Mond and B. D. Craven, A class of nondifferentiable complex programming problems, J. Math. Oper. and Stat., 6 (1975), 581-591.  doi: 10.1007/bf01966096.  Google Scholar

[18]

I. M. Stancu-MinasianD. I. Duca and T. Nishida, Multiple objective linear fractional optimization in complex space, Math. Japonica., 35 (1990), 195-203.   Google Scholar

[19] Y. SawaragiH. Nakayama and T. Tanino, Theory of Multiobjective Optimization, Academic Press, Orlando, FL, 1985.   Google Scholar
[20]

E. A. Youness and M. E. Elbrolosy, Extension to necessary optimality conditions in complex programming, Appl. Math. Comput., 154 (2004), 229-237.  doi: 10.1016/S0096-3003(03)00706-9.  Google Scholar

[21]

E. A. Youness and M. E. Elbrolosy, Extension to sufficient optimality conditions in complex programming, J. Math. Stat., 1 (2005), 40-48.  doi: 10.3844/jmssp.2005.40.48.  Google Scholar

show all references

References:
[1]

R. A. Abrams, Nonlinear programming in complex space: sufficient conditions and duality, J. Math. Anal. Appl., 38 (1972), 619-632.  doi: 10.1016/0022-247X(72)90073-X.  Google Scholar

[2]

R. A. Abrams and A. Ben-Israel, Complex mathematical programming, Developments in Operations Research (eds. B. Avi-Itzhak, Gordon and Breach), New York, (1971), 3–20. Google Scholar

[3]

R. A. Abrams and A. Ben-Israel, Nonlinear programming in complex space: necessary conditions, SIAM J. Control., 9 (1971), 606-620.   Google Scholar

[4]

N. Datta and D. Bhatia, Duality for a class of nondifferentiable mathematical programming problems in complex space, J. Math. Anal. Appl., 101 (1984), 1-11.  doi: 10.1016/0022-247X(84)90053-2.  Google Scholar

[5]

D. I. Duca, On vectorial programming problem in complex space, Studia Univ. Babeș-Bolyai Math., 24 (1979), 51–56.  Google Scholar

[6]

D. I. Duca, Proper efficiency in the complex vectorial programming, Studia Univ. Babeș-Bolyai Math., 25 (1980), 73–80.  Google Scholar

[7]

D. I. Duca, Efficiency criteria in vectorial programming in complex space without convexity, Cahiers Centre Études Rech. Opér., 26 (1984), 217–226.  Google Scholar

[8]

D. I. Duca, Multicriteria Optimization in Complex Space, Casa Cǎrţii de Ştiinţǎ, Cluj-Napoca, 2005. Google Scholar

[9]

M. E. Elbrolosy, Efficiency for a generalized form of vector optimization problems in complex space, Optimization, 65 (2016), 1245-1257.  doi: 10.1080/02331934.2015.1104680.  Google Scholar

[10]

O. Ferrero, On nonlinear programming in complex spaces, J. Math. Anal. Appl., 164 (1992), 399-416.  doi: 10.1016/0022-247X(92)90123-U.  Google Scholar

[11]

H. C. Lai and T. Y. Huang, Optimality conditions for a nondifferentiable minimax programming in complex spaces, Nonlinear Anal., 71 (2009), 1205-1212.  doi: 10.1016/j.na.2008.11.053.  Google Scholar

[12]

H. C. Lai and T. Y. Huang, Optimality conditions for nondifferentiable minimax fractional programming with complex variables, J. Math. Anal. Appl., 359 (2009), 229-239.  doi: 10.1016/j.jmaa.2009.05.049.  Google Scholar

[13]

H. C. Lai and T. Y. Huang, Nondifferentiable minimax fractional programming in complex spaces with parametric duality, J. Global Optim., 53 (2012), 243-254.  doi: 10.1007/s10898-011-9680-7.  Google Scholar

[14]

H. C. Lai and T. Y. Huang, Mixed type duality for a nondifferentiable minimax fractional complex programming, Pacific J. Optim., 10 (2014), 305-319.   Google Scholar

[15]

H. C. Lai and J. C. Liu, Duality for nondifferentiable minimax programming in complex spaces, Nonlinear Anal., 71 (2009), e224–e233. doi: 10.1016/j.na.2008.10.062.  Google Scholar

[16]

N. Levinson, Linear programming in complex space, J. Math. Anal. Appl., 14 (1966), 44-62.  doi: 10.1016/0022-247X(66)90061-8.  Google Scholar

[17]

B. Mond and B. D. Craven, A class of nondifferentiable complex programming problems, J. Math. Oper. and Stat., 6 (1975), 581-591.  doi: 10.1007/bf01966096.  Google Scholar

[18]

I. M. Stancu-MinasianD. I. Duca and T. Nishida, Multiple objective linear fractional optimization in complex space, Math. Japonica., 35 (1990), 195-203.   Google Scholar

[19] Y. SawaragiH. Nakayama and T. Tanino, Theory of Multiobjective Optimization, Academic Press, Orlando, FL, 1985.   Google Scholar
[20]

E. A. Youness and M. E. Elbrolosy, Extension to necessary optimality conditions in complex programming, Appl. Math. Comput., 154 (2004), 229-237.  doi: 10.1016/S0096-3003(03)00706-9.  Google Scholar

[21]

E. A. Youness and M. E. Elbrolosy, Extension to sufficient optimality conditions in complex programming, J. Math. Stat., 1 (2005), 40-48.  doi: 10.3844/jmssp.2005.40.48.  Google Scholar

Figure 1.  The graphs of Example 2.1
[1]

Nguyen Thi Toan. Generalized Clarke epiderivatives of the extremum multifunction to a multi-objective parametric discrete optimal control problem. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021088

[2]

Xiuhong Chen, Zhihua Li. On optimality conditions and duality for non-differentiable interval-valued programming problems with the generalized (F, ρ)-convexity. Journal of Industrial & Management Optimization, 2018, 14 (3) : 895-912. doi: 10.3934/jimo.2017081

[3]

Tien-Fu Liang, Hung-Wen Cheng. Multi-objective aggregate production planning decisions using two-phase fuzzy goal programming method. Journal of Industrial & Management Optimization, 2011, 7 (2) : 365-383. doi: 10.3934/jimo.2011.7.365

[4]

Ya Liu, Zhaojin Li. Dynamic-programming-based heuristic for multi-objective operating theater planning. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020145

[5]

Azam Moradi, Jafar Razmi, Reza Babazadeh, Ali Sabbaghnia. An integrated Principal Component Analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertainty. Journal of Industrial & Management Optimization, 2019, 15 (2) : 855-879. doi: 10.3934/jimo.2018074

[6]

Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021037

[7]

Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130

[8]

Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial & Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789

[9]

Jian Xiong, Zhongbao Zhou, Ke Tian, Tianjun Liao, Jianmai Shi. A multi-objective approach for weapon selection and planning problems in dynamic environments. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1189-1211. doi: 10.3934/jimo.2016068

[10]

Dušan M. Stipanović, Claire J. Tomlin, George Leitmann. A note on monotone approximations of minimum and maximum functions and multi-objective problems. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 487-493. doi: 10.3934/naco.2011.1.487

[11]

Hamed Fazlollahtabar, Mohammad Saidi-Mehrabad. Optimizing multi-objective decision making having qualitative evaluation. Journal of Industrial & Management Optimization, 2015, 11 (3) : 747-762. doi: 10.3934/jimo.2015.11.747

[12]

Yuan-mei Xia, Xin-min Yang, Ke-quan Zhao. A combined scalarization method for multi-objective optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (5) : 2669-2683. doi: 10.3934/jimo.2020088

[13]

Xia Zhao, Jianping Dou. Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1263-1288. doi: 10.3934/jimo.2018095

[14]

Shungen Luo, Xiuping Guo. Multi-objective optimization of multi-microgrid power dispatch under uncertainties using interval optimization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021208

[15]

Xian-Jun Long, Jing Quan. Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 361-370. doi: 10.3934/naco.2011.1.361

[16]

Adriel Cheng, Cheng-Chew Lim. Optimizing system-on-chip verifications with multi-objective genetic evolutionary algorithms. Journal of Industrial & Management Optimization, 2014, 10 (2) : 383-396. doi: 10.3934/jimo.2014.10.383

[17]

Han Yang, Jia Yue, Nan-jing Huang. Multi-objective robust cross-market mixed portfolio optimization under hierarchical risk integration. Journal of Industrial & Management Optimization, 2020, 16 (2) : 759-775. doi: 10.3934/jimo.2018177

[18]

Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021051

[19]

Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial & Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009

[20]

Zongmin Li, Jiuping Xu, Wenjing Shen, Benjamin Lev, Xiao Lei. Bilevel multi-objective construction site security planning with twofold random phenomenon. Journal of Industrial & Management Optimization, 2015, 11 (2) : 595-617. doi: 10.3934/jimo.2015.11.595

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]