March  2022, 12(1): 135-157. doi: 10.3934/naco.2021056

An active set solver for constrained $ H_\infty $ optimal control problems with state and input constraints

1. 

School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China

2. 

School of Foreign Studies, Hefei University of Technology, Hefei 230009, China

3. 

School of Mathematical Sciences, Sunway University, Malaysia, Coordinated Innovation Center for Computable Modeling in Management Science, Tianjin University of Finance and Economics, Tianjin, China

* Corresponding author: Canghua Jiang

Received  February 2021 Revised  April 2021 Published  March 2022 Early access  November 2021

Fund Project: This paper is dedicated to the memory of Professor Han-Chin Lai. The first author is supported by the Natural Science Foundation of Anhui Province, China, under Grant 2008085MF216

This paper proposes an active set solver for $ H_\infty $ min-max optimal control problems involving linear discrete-time systems with linearly constrained states, controls and additive disturbances. The proposed solver combines Riccati recursion with dynamic programming. To deal with possible degeneracy (i.e. violations of the linear independence constraint qualification), constraint transformations are introduced that allow the surplus equality constraints on the state at each stage to be moved to the previous stage together with their Lagrange multipliers. In this way, degeneracy for a feasible active set can be determined by checking whether there exists an equality constraint on the initial state over the prediction horizon. For situations when the active set is degenerate and all active constraints indexed by it are non-redundant, a vertex exploration strategy is developed to seek a non-degenerate active set. If the sampled state resides in a robust control invariant set and certain second-order sufficient conditions are satisfied at each stage, then a bounded $ l_2 $ gain from the disturbance to controlled output can be guaranteed for the closed-loop system under some standard assumptions. Theoretical analysis and numerical simulations show that the computational complexity per iteration of the proposed solver depends linearly on the prediction horizon.

Citation: Canghua Jiang, Dongming Zhang, Chi Yuan, Kok Ley Teo. An active set solver for constrained $ H_\infty $ optimal control problems with state and input constraints. Numerical Algebra, Control & Optimization, 2022, 12 (1) : 135-157. doi: 10.3934/naco.2021056
References:
[1]

A. BemporadM. MorariV. Dua and E. N. Pistikopoulos, The explicit linear quadratic regulator for constrained systems, Automatica, 38 (2002), 3-20.  doi: 10.1016/S0005-1098(01)00174-1.  Google Scholar

[2]

F. Borrelli, Discrete Time Constrained Optimal Control, Ph.D. thesis, Swiss Federal Institute of Technology (ETH), Zurich, 2002. Google Scholar

[3]

A. E. Bryson and Y.-C. Ho, Applied Optimal Control: Optimization, Estimation, and Control, Hemisphere, Washington, 1975.  Google Scholar

[4]

J. Buerger, M. Cannon and B. Kouvaritakis, An active set solver for min-max robust control, in Proceedings of the 2013 American Control Conference, Washington, USA, (2013), 4227–4233. Google Scholar

[5]

J. BuergerM. Cannon and B. Kouvaritakis, An active set solver for input-constrained robust receding horizon control, Automatica, 50 (2014), 155-161.  doi: 10.1016/j.automatica.2013.09.032.  Google Scholar

[6]

J. BuergerM. Cannon and B. Kouvaritakis, Active set solver for min-max robust control with state and input constraints, International Journal of Robust and Nonlinear Control, 26 (2016), 3209-3231.  doi: 10.1002/rnc.3501.  Google Scholar

[7]

M. CannonW. Liao and B. Kouvaritakis, Efficient MPC optimization using Pontryagin's minimum principle, International Journal of Robust and Nonlinear Control, 18 (2008), 831-844.  doi: 10.1002/rnc.1247.  Google Scholar

[8]

R. GhaemiJ. Sun and I. V. Kolmanovsky, Neighboring extremal solution for nonlinear discrete-time optimal control problems with state inequality constraints, IEEE Transactions on Automatic Control, 54 (2009), 2674-2679.  doi: 10.1109/TAC.2009.2031576.  Google Scholar

[9]

P. J. GoulartE. C. Kerrigan and T. Alamo, Control of constrained discrete-time systems with bounded $l_2$ gain, IEEE Transactions on Automatic Control, 54 (2009), 1105-1111.  doi: 10.1109/TAC.2009.2013002.  Google Scholar

[10]

M. Green and D. J. N. Limebeer, Linear Robust Control, Prentice-Hall, Englewood Cliffs, NJ, 1995. Google Scholar

[11]

I. Kolmanovsky and E. G. Gilbert, Theory and computation of disturbance invariant sets for discrete-time linear systems, Mathematical Problems in Engineering, 4 (1998), 317-367.   Google Scholar

[12]

M. V. KothareV. Balakrishnan and M. Morari, Robust constrained model predictive control using linear matrix inequalities, Automatica, 32 (1996), 1361-1379.  doi: 10.1016/0005-1098(96)00063-5.  Google Scholar

[13]

D. Q. MayneS. V. RakovićR. B. Vinter and E. C. Kerrigan, Characterization of the solution to a constrained ${H}_{\infty}$ optimal control problem, Automatica, 42 (2006), 371-382.  doi: 10.1016/j.automatica.2005.10.015.  Google Scholar

[14]

J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, 2006.  Google Scholar

[15]

S. V. RakovićB. KouvaritakisM. CannonC. Panos and R. Findeisen, Parameterized tube model predictive control, IEEE Transactions on Automatic Control, 57 (2012), 2746-2761.  doi: 10.1109/TAC.2012.2191174.  Google Scholar

[16]

P. O. M. Scokaert and D. Q. Mayne, Min-max feedback model predictive control for constrained linear systems, IEEE Transactions on Automatic Control, 43 (1998), 1136-1142.  doi: 10.1109/9.704989.  Google Scholar

[17]

P. TøndelT. A. Johansen and A. Bemporad, An algorithm for multi-parametric quadratic programming and explicit MPC solutions, Automatica, 39 (2003), 489-497.  doi: 10.1016/S0005-1098(02)00250-9.  Google Scholar

[18]

Y. Wang and S. Boyd, Fast model predictive control using online optimization, IEEE Transactions on Control Systems Technology, 18 (2010), 267-278.   Google Scholar

[19]

G. M. Ziegler, Lectures on Polytopes, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4613-8431-1.  Google Scholar

show all references

References:
[1]

A. BemporadM. MorariV. Dua and E. N. Pistikopoulos, The explicit linear quadratic regulator for constrained systems, Automatica, 38 (2002), 3-20.  doi: 10.1016/S0005-1098(01)00174-1.  Google Scholar

[2]

F. Borrelli, Discrete Time Constrained Optimal Control, Ph.D. thesis, Swiss Federal Institute of Technology (ETH), Zurich, 2002. Google Scholar

[3]

A. E. Bryson and Y.-C. Ho, Applied Optimal Control: Optimization, Estimation, and Control, Hemisphere, Washington, 1975.  Google Scholar

[4]

J. Buerger, M. Cannon and B. Kouvaritakis, An active set solver for min-max robust control, in Proceedings of the 2013 American Control Conference, Washington, USA, (2013), 4227–4233. Google Scholar

[5]

J. BuergerM. Cannon and B. Kouvaritakis, An active set solver for input-constrained robust receding horizon control, Automatica, 50 (2014), 155-161.  doi: 10.1016/j.automatica.2013.09.032.  Google Scholar

[6]

J. BuergerM. Cannon and B. Kouvaritakis, Active set solver for min-max robust control with state and input constraints, International Journal of Robust and Nonlinear Control, 26 (2016), 3209-3231.  doi: 10.1002/rnc.3501.  Google Scholar

[7]

M. CannonW. Liao and B. Kouvaritakis, Efficient MPC optimization using Pontryagin's minimum principle, International Journal of Robust and Nonlinear Control, 18 (2008), 831-844.  doi: 10.1002/rnc.1247.  Google Scholar

[8]

R. GhaemiJ. Sun and I. V. Kolmanovsky, Neighboring extremal solution for nonlinear discrete-time optimal control problems with state inequality constraints, IEEE Transactions on Automatic Control, 54 (2009), 2674-2679.  doi: 10.1109/TAC.2009.2031576.  Google Scholar

[9]

P. J. GoulartE. C. Kerrigan and T. Alamo, Control of constrained discrete-time systems with bounded $l_2$ gain, IEEE Transactions on Automatic Control, 54 (2009), 1105-1111.  doi: 10.1109/TAC.2009.2013002.  Google Scholar

[10]

M. Green and D. J. N. Limebeer, Linear Robust Control, Prentice-Hall, Englewood Cliffs, NJ, 1995. Google Scholar

[11]

I. Kolmanovsky and E. G. Gilbert, Theory and computation of disturbance invariant sets for discrete-time linear systems, Mathematical Problems in Engineering, 4 (1998), 317-367.   Google Scholar

[12]

M. V. KothareV. Balakrishnan and M. Morari, Robust constrained model predictive control using linear matrix inequalities, Automatica, 32 (1996), 1361-1379.  doi: 10.1016/0005-1098(96)00063-5.  Google Scholar

[13]

D. Q. MayneS. V. RakovićR. B. Vinter and E. C. Kerrigan, Characterization of the solution to a constrained ${H}_{\infty}$ optimal control problem, Automatica, 42 (2006), 371-382.  doi: 10.1016/j.automatica.2005.10.015.  Google Scholar

[14]

J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, 2006.  Google Scholar

[15]

S. V. RakovićB. KouvaritakisM. CannonC. Panos and R. Findeisen, Parameterized tube model predictive control, IEEE Transactions on Automatic Control, 57 (2012), 2746-2761.  doi: 10.1109/TAC.2012.2191174.  Google Scholar

[16]

P. O. M. Scokaert and D. Q. Mayne, Min-max feedback model predictive control for constrained linear systems, IEEE Transactions on Automatic Control, 43 (1998), 1136-1142.  doi: 10.1109/9.704989.  Google Scholar

[17]

P. TøndelT. A. Johansen and A. Bemporad, An algorithm for multi-parametric quadratic programming and explicit MPC solutions, Automatica, 39 (2003), 489-497.  doi: 10.1016/S0005-1098(02)00250-9.  Google Scholar

[18]

Y. Wang and S. Boyd, Fast model predictive control using online optimization, IEEE Transactions on Control Systems Technology, 18 (2010), 267-278.   Google Scholar

[19]

G. M. Ziegler, Lectures on Polytopes, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4613-8431-1.  Google Scholar

Figure 1.  The CPU time per iteration and the maximum number of iterations
Figure 2.  The controlled pitch dynamics
Table 1.  Computational complexity of Algorithm 1
Step Number of operations
2) $ \begin{array}{l}O((\frac{4}{3}(n_{A_w}^2n_w+n_{A_u}^2n_u)\\+(n_wn_{A_w}+n_{A_w}^2+n_un_{A_u}+n_{A_u}^2)n_x+n_{A_u}n_x^2)N)\end{array} $
3) $ \begin{array}{l}O((a_1(n_{A_w}n_w^2+n_{A_u}n_u^2)+a_2(n_w^3+n_u^3)+a_3(n_w^2+n_u^2)n_x\\+(n_w+n_{A_w}+n_u+n_{A_u})n_x^2+2n_x^3)N)\end{array} $
4) $ \begin{array}{l}O\left((b_1n_x^2+b_2(o_k^d)^3)N\right)\end{array} $
8) $ \begin{array}{l}O(n_k^d(\frac{4}{3}(n_{A_w}^2n_w+n_{A_u}^2n_u)\\+(n_wn_{A_w}+n_{A_w}^2+n_un_{A_u}+n_{A_u}^2)n_x+n_{A_u}n_x^2)N)\end{array} $
Step Number of operations
2) $ \begin{array}{l}O((\frac{4}{3}(n_{A_w}^2n_w+n_{A_u}^2n_u)\\+(n_wn_{A_w}+n_{A_w}^2+n_un_{A_u}+n_{A_u}^2)n_x+n_{A_u}n_x^2)N)\end{array} $
3) $ \begin{array}{l}O((a_1(n_{A_w}n_w^2+n_{A_u}n_u^2)+a_2(n_w^3+n_u^3)+a_3(n_w^2+n_u^2)n_x\\+(n_w+n_{A_w}+n_u+n_{A_u})n_x^2+2n_x^3)N)\end{array} $
4) $ \begin{array}{l}O\left((b_1n_x^2+b_2(o_k^d)^3)N\right)\end{array} $
8) $ \begin{array}{l}O(n_k^d(\frac{4}{3}(n_{A_w}^2n_w+n_{A_u}^2n_u)\\+(n_wn_{A_w}+n_{A_w}^2+n_un_{A_u}+n_{A_u}^2)n_x+n_{A_u}n_x^2)N)\end{array} $
[1]

Liqiang Jin, Yanyan Yin, Kok Lay Teo, Fei Liu. Event-triggered mixed $ H_\infty $ and passive control for Markov jump systems with bounded inputs. Journal of Industrial & Management Optimization, 2021, 17 (3) : 1343-1355. doi: 10.3934/jimo.2020024

[2]

Junlin Xiong, Wenjie Liu. $ H_{\infty} $ observer-based control for large-scale systems with sparse observer communication network. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 331-343. doi: 10.3934/naco.2020005

[3]

Torsten Trimborn, Lorenzo Pareschi, Martin Frank. Portfolio optimization and model predictive control: A kinetic approach. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6209-6238. doi: 10.3934/dcdsb.2019136

[4]

Meixia Li, Changyu Wang, Biao Qu. Non-convex semi-infinite min-max optimization with noncompact sets. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1859-1881. doi: 10.3934/jimo.2017022

[5]

Xingyue Liang, Jianwei Xia, Guoliang Chen, Huasheng Zhang, Zhen Wang. $ \mathcal{H}_{\infty} $ control for fuzzy markovian jump systems based on sampled-data control method. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1329-1343. doi: 10.3934/dcdss.2020368

[6]

Burak Ordin, Adil Bagirov, Ehsan Mohebi. An incremental nonsmooth optimization algorithm for clustering using $ L_1 $ and $ L_\infty $ norms. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2757-2779. doi: 10.3934/jimo.2019079

[7]

Rakesh Nandi, Sujit Kumar Samanta, Chesoong Kim. Analysis of $ D $-$ BMAP/G/1 $ queueing system under $ N $-policy and its cost optimization. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3603-3631. doi: 10.3934/jimo.2020135

[8]

Yong Xia, Ruey-Lin Sheu, Shu-Cherng Fang, Wenxun Xing. Double well potential function and its optimization in the $N$ -dimensional real space-part Ⅱ. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1307-1328. doi: 10.3934/jimo.2016074

[9]

Shu-Cherng Fang, David Y. Gao, Gang-Xuan Lin, Ruey-Lin Sheu, Wenxun Xing. Double well potential function and its optimization in the $N$ -dimensional real space-part Ⅰ. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1291-1305. doi: 10.3934/jimo.2016073

[10]

X. X. Huang, Xiaoqi Yang, K. L. Teo. A smoothing scheme for optimization problems with Max-Min constraints. Journal of Industrial & Management Optimization, 2007, 3 (2) : 209-222. doi: 10.3934/jimo.2007.3.209

[11]

Wawan Hafid Syaifudin, Endah R. M. Putri. The application of model predictive control on stock portfolio optimization with prediction based on Geometric Brownian Motion-Kalman Filter. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021119

[12]

M. S. Mahmoud, P. Shi, Y. Shi. $H_\infty$ and robust control of interconnected systems with Markovian jump parameters. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 365-384. doi: 10.3934/dcdsb.2005.5.365

[13]

Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021036

[14]

Yuji Harata, Yoshihisa Banno, Kouichi Taji. Parametric excitation based bipedal walking: Control method and optimization. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 171-190. doi: 10.3934/naco.2011.1.171

[15]

Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control & Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021

[16]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[17]

Li-Min Wang, Jing-Xian Yu, Jia Shi, Fu-Rong Gao. Delay-range dependent $H_\infty$ control for uncertain 2D-delayed systems. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 11-23. doi: 10.3934/naco.2015.5.11

[18]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[19]

Ruxandra Stavre. Optimization of the blood pressure with the control in coefficients. Evolution Equations & Control Theory, 2020, 9 (1) : 131-151. doi: 10.3934/eect.2020019

[20]

Dan Tiba. Implicit parametrizations and applications in optimization and control. Mathematical Control & Related Fields, 2020, 10 (3) : 455-470. doi: 10.3934/mcrf.2020006

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]