[1]
|
F. Alizadeh and D. Goldfarb, Second-order cone programming, Mathematical Programming, 95 (2003), 3-51.
doi: 10.1007/s10107-002-0339-5.
|
[2]
|
K. B. Athreya and S. N. Lahiri, Measure Theory and Probability Theory, Springer Science & Business Media, 2006.
|
[3]
|
I. E. Bardakci and C. M. Lagoa, Distributionally robust portfolio optimization, in 2019 IEEE 58th Conference on Decision and Control (CDC), IEEE, (2019), 1526–1531.
doi: 10.1007/s11579-019-00241-1.
|
[4]
|
G. Bayraksan and D. K. Love, Data-driven stochastic programming using phi-divergences, in The Operations Research Revolution, INFORMS, (2015), 1–19.
|
[5]
|
A. Ben-Tal, D. den Hertog, A. De Waegenaere, B. Melenberg and G. Rennen, Robust solutions of optimization problems affected by uncertain probabilities, Management Science, 59 (2013), 341-357.
|
[6]
|
A. Ben-Tal, L. El Ghaoui and A. Nemirovski, Robust Optimization, Princeton University Press, 2009.
doi: 10.1515/9781400831050.
|
[7]
|
A. Ben-Tal, E. Hazan, T. Koren and S. Mannor, Oracle-based robust optimization via online learning, Operations Research, 63 (2015), 628-638.
doi: 10.1287/opre.2015.1374.
|
[8]
|
A. Ben-Tal and A. Nemirovski, Robust convex optimization, Mathematics of Operations Research, 23 (1998), 769-805.
doi: 10.1287/moor.23.4.769.
|
[9]
|
A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear programs, Operations Research Letters, 25 (1999), 1-13.
doi: 10.1016/S0167-6377(99)00016-4.
|
[10]
|
A. Ben-Tal and A. Nemirovski, Robust solutions of linear programming problems contaminated with uncertain data, Mathematical Programming, 88 (2000), 411-424.
doi: 10.1007/PL00011380.
|
[11]
|
D. Bertsimas, D. B. Brown and C. Caramanis, Theory and applications of robust optimization, SIAM Review, 53 (2011), 464-501.
doi: 10.1137/080734510.
|
[12]
|
D. Bertsimas and M. S. Copenhaver, Characterization of the equivalence of robustification and regularization in linear and matrix regression, European Journal of Operational Research, 270 (2018), 931-942.
doi: 10.1016/j.ejor.2017.03.051.
|
[13]
|
D. Bertsimas, X. V. Doan, K. Natarajan and C.-P. Teo, Models for minimax stochastic linear optimization problems with risk aversion, Mathematics of Operations Research, 35 (2010), 580-602.
doi: 10.1287/moor.1100.0445.
|
[14]
|
D. Bertsimas, V. Gupta and N. Kallus, Data-driven robust optimization, Mathematical Programming, 167 (2018), 235-292.
doi: 10.1007/s10107-017-1125-8.
|
[15]
|
D. Bertsimas, V. Gupta and N. Kallus, Robust sample average approximation, Mathematical Programming, 171 (2018), 217-282.
doi: 10.1007/s10107-017-1174-z.
|
[16]
|
D. Bertsimas and I. Popescu, Optimal inequalities in probability theory: A convex optimization approach, SIAM Journal on Optimization, 15 (2005), 780-804.
doi: 10.1137/S1052623401399903.
|
[17]
|
D. Bertsimas and M. Sim, The price of robustness, Operations Research, 52 (2004), 35-53.
doi: 10.1287/opre.1030.0065.
|
[18]
|
D. Bertsimas and M. Sim, Tractable approximations to robust conic optimization problems, Mathematical Programming, 107 (2006), 5-36.
doi: 10.1007/s10107-005-0677-1.
|
[19]
|
D. Bertsimas, M. Sim and M. Zhang, Adaptive distributionally robust optimization, Management Science, 65 (2019), 604-618.
|
[20]
|
H.-G. Beyer and B. Sendhoff, Robust optimization–a comprehensive survey, Computer Methods in Applied Mechanics and Engineering, 196 (2007), 3190-3218.
doi: 10.1016/j.cma.2007.03.003.
|
[21]
|
C. Bhattacharyya, Second order cone programming formulations for feature selection, Journal of Machine Learning Research, 5 (2004), 1417-1433.
|
[22]
|
J. R. Birge and F. Louveaux, Introduction to Stochastic Programming, 2nd edition, Springer Publishing Company, Incorporated, 2011.
doi: 10.1007/978-1-4614-0237-4.
|
[23]
|
J. Birrell, P. Dupuis, M. A. Katsoulakis, Y. Pantazis and L. Rey-Bellet, $(f, \gamma) $-divergences: Interpolating between $ f $-divergences and integral probability metrics, arXiv: 2011.05953.
|
[24]
|
J. Blanchet, L. Chen and X. Y. Zhou, Distributionally robust mean-variance portfolio selection with wasserstein distances, arXiv: 1802.04885.
|
[25]
|
J. Blanchet, P. W. Glynn, J. Yan and Z. Zhou, Multivariate distributionally robust convex regression under absolute error loss, arXiv: 1905.12231.
|
[26]
|
J. Blanchet and Y. Kang, Sample out-of-sample inference based on wasserstein distance, arXiv: 1605.01340.
doi: 10.1287/opre.2020.2028.
|
[27]
|
J. Blanchet and Y. Kang, Semi-supervised learning based on distributionally robust optimization, Data Analysis and Applications 3: Computational, Classification, Financial, Statistical and Stochastic Methods, 5 (2020), 1-33.
|
[28]
|
J. Blanchet, Y. Kang and K. Murthy, Robust wasserstein profile inference and applications to machine learning, Journal of Applied Probability, 56 (2019), 830-857.
doi: 10.1017/jpr.2019.49.
|
[29]
|
J. Blanchet, K. Murthy and N. Si, Confidence regions in wasserstein distributionally robust estimation, reprint arXiv: 1906.01614.
|
[30]
|
V. I. Bogachev and A. V. Kolesnikov, The monge-kantorovich problem: achievements, connections, and perspectives, Russian Mathematical Surveys, 67 (2012), 785-890.
doi: 10.1070/rm2012v067n05abeh004808.
|
[31]
|
F. Bolley, A. Guillin and C. Villani, Quantitative concentration inequalities for empirical measures on non-compact spaces, Probability Theory and Related Fields, 137 (2007), 541-593.
doi: 10.1007/s00440-006-0004-7.
|
[32]
|
M. Breton and S. El Hachem, Algorithms for the solution of stochastic dynamic minimax problems, Computational Optimization and Applications, 4 (1995), 317-345.
doi: 10.1007/BF01300861.
|
[33]
|
M. Breton and S. El Hachem, A scenario aggregation algorithm for the solution of stochastic dynamic minimax problems, Stochastics and Stochastic Reports, 53 (1995), 305-322.
doi: 10.1080/17442509508833994.
|
[34]
|
G. C. Calafiore, Ambiguous risk measures and optimal robust portfolios, SIAM Journal on Optimization, 18 (2007), 853-877.
doi: 10.1137/060654803.
|
[35]
|
G. C. Calafiore and L. El Ghaoui, On distributionally robust chance-constrained linear programs, Journal of Optimization Theory and Applications, 130 (2006), 1-22.
doi: 10.1007/s10957-006-9084-x.
|
[36]
|
R. Chen and I. C. Paschalidis, A robust learning approach for regression models based on distributionally robust optimization, Journal of Machine Learning Research, 19 (2018), 1-48.
|
[37]
|
Y. Chen, Q. Guo, H. Sun, Z. Li, W. Wu and Z. Li, A distributionally robust optimization model for unit commitment based on kullback–leibler divergence, IEEE Transactions on Power Systems, 33 (2018), 5147-5160.
|
[38]
|
J. Cheng, E. Delage and A. Lisser, Distributionally robust stochastic knapsack problem, SIAM Journal on Optimization, 24 (2014), 1485-1506.
doi: 10.1137/130915315.
|
[39]
|
J. Cheng, R. Li-Yang Chen, H. N. Najm, A. Pinar, C. Safta and J.-P. Watson, Distributionally robust optimization with principal component analysis, SIAM Journal on Optimization, 28 (2018), 1817-1841.
doi: 10.1137/16M1075910.
|
[40]
|
A. Cherukuri and J. Cortés, Cooperative data-driven distributionally robust optimization, IEEE Transactions on Automatic Control, 65 (2019), 4400-4407.
|
[41]
|
V. K. Chopra and W. T. Ziemba, The effect of errors in means, variances, and covariances on optimal portfolio choice, in Handbook of the Fundamentals of Financial Decision Making: Part I, World Scientific, (2013), 365–373.
|
[42]
|
K. L. Clarkson, E. Hazan and D. P. Woodruff, Sublinear optimization for machine learning, Journal of the ACM (JACM), 59 (2012), 1-49.
doi: 10.1145/2371656.2371658.
|
[43]
|
A. R. Conn and N. I. Gould, An exact penalty function for semi-infinite programming, Mathematical Programming, 37 (1987), 19-40.
doi: 10.1007/BF02591681.
|
[44]
|
T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd edition, Wiley Online Library, Hoboken, 2012.
|
[45]
|
G. B. Dantzig, Linear programming under uncertainty, Management Science, 50 (2004), 1764-1769.
doi: 10.1287/opre.50.1.42.17798.
|
[46]
|
E. del Barrio, E. Giné and C. Matrán, Central limit theorems for the wasserstein distance between the empirical and the true distributions, Annals of Probability, 27 (1999), 1009-1071.
doi: 10.1214/aop/1022677394.
|
[47]
|
E. Delage and Y. Ye, Distributionally robust optimization under moment uncertainty with application to data-driven problems, Operations Research, 58 (2010), 595-612.
doi: 10.1287/opre.1090.0741.
|
[48]
|
S. Dharmadhikari and K. Joag-Dev, Unimodality, Convexity, and Applications, Elsevier, 1988.
|
[49]
|
T. Dinh, R. Fukasawa and J. Luedtke, Exact algorithms for the chance-constrained vehicle routing problem, Mathematical Programming, 172 (2018), 105-138.
doi: 10.1007/s10107-017-1151-6.
|
[50]
|
X. V. Doan, X. Li and K. Natarajan, Robustness to dependency in portfolio optimization using overlapping marginals, Operations Research, 63 (2015), 1468-1488.
doi: 10.1287/opre.2015.1424.
|
[51]
|
N. Du, Y. Liu and Y. Liu, A new data-driven distributionally robust portfolio optimization method based on wasserstein ambiguity set, IEEE Access, 9 (2021), 3174-3194.
|
[52]
|
C. Duan, W. Fang, L. Jiang, L. Yao and J. Liu, Distributionally robust chance-constrained approximate ac-opf with wasserstein metric, IEEE Transactions on Power Systems, 33 (2018), 4924-4936.
|
[53]
|
J. C. Duchi and H. Namkoong, Variance-based regularization with convex objectives, Journal of Machine Learning Research, 20 (2019), 1-68.
|
[54]
|
J. C. Duchi and H. Namkoong, Learning models with uniform performance via distributionally robust optimization, arXiv: 1810.08750.
doi: 10.1214/20-aos2004.
|
[55]
|
J. Dupačová, Stochastic programming: Minimax approach, Encyclopedia Optimization, 5 (2001), 327-330.
|
[56]
|
J. Dupačová, On minimax solutions of stochastic linear programming problems, Časopis Pro Pěstování Matematiky, 091 (1966), 423–430.
|
[57]
|
J. Dupačová, The minimax approach to stochastic programming and an illustrative application, Stochastics, 20 (1987), 73-88.
doi: 10.1080/17442508708833436.
|
[58]
|
J. Dupačová, Uncertainties in minimax stochastic programs, Optimization, 60 (2011), 1235-1250.
doi: 10.1080/02331934.2010.532214.
|
[59]
|
L. El Ghaoui and H. Lebret, Robust solutions to least-squares problems with uncertain data, SIAM Journal on Matrix Analysis and Applications, 18 (1997), 1035-1064.
doi: 10.1137/S0895479896298130.
|
[60]
|
E. Erdoğan and G. Iyengar, Ambiguous chance constrained problems and robust optimization, Mathematical Programming, 107 (2006), 37-61.
doi: 10.1007/s10107-005-0678-0.
|
[61]
|
P. M. Esfahani and D. Kuhn, Data-driven distributionally robust optimization using the wasserstein metric: Performance guarantees and tractable reformulations, Mathematical Programming, 171 (2018), 115-166.
doi: 10.1007/s10107-017-1172-1.
|
[62]
|
F. Farnia and D. Tse, A minimax approach to supervised learning, Advances in Neural Information Processing Systems, 29 (2016), 4240-4248.
|
[63]
|
L. Faury, U. Tanielian, E. Dohmatob, E. Smirnova and F. Vasile, Distributionally robust counterfactual risk minimization, Proceedings of the AAAI Conference on Artificial Intelligence, 34 (2020), 3850-3857.
|
[64]
|
N. Fournier and A. Guillin, On the rate of convergence in wasserstein distance of the empirical measure, Probability Theory and Related Fields, 162 (2015), 707-738.
doi: 10.1007/s00440-014-0583-7.
|
[65]
|
D. Fouskakis and D. Draper, Stochastic optimization: a review, International Statistical Review, 70 (2002), 315-349.
|
[66]
|
C. Frogner, S. Claici, E. Chien and J. Solomon, Incorporating unlabeled data into distributionally robust learning, Journal of Machine Learning Research, 22 (2021), 1-46.
|
[67]
|
V. Gabrel, C. Murat and A. Thiele, Recent advances in robust optimization: An overview, European Journal of Operational Research, 235 (2014), 471-483.
doi: 10.1016/j.ejor.2013.09.036.
|
[68]
|
G. Gallego and I. Moon, The distribution free newsboy problem: review and extensions, Journal of the Operational Research Society, 44 (1993), 825-834.
|
[69]
|
R. Gao, Finite-sample guarantees for wasserstein distributionally robust optimization: Breaking the curse of dimensionality, arXiv: 2009.04382.
|
[70]
|
R. Gao and A. J. Kleywegt, Distributionally robust stochastic optimization with wasserstein distance, arXiv: 1604.02199.
|
[71]
|
R. Gao and A. J. Kleywegt, Distributionally robust stochastic optimization with dependence structure, arXiv: 1701.04200.
|
[72]
|
R. Gao, L. Xie, Y. Xie and H. Xu, Robust hypothesis testing using wasserstein uncertainty sets, in NeurIPS, (2018), 7913–7923.
|
[73]
|
L. E. Ghaoui, M. Oks and F. Oustry, Worst-case value-at-risk and robust portfolio optimization: A conic programming approach, Operations Research, 51 (2003), 543-556.
doi: 10.1287/opre.51.4.543.16101.
|
[74]
|
S. Ghosal and W. Wiesemann, The distributionally robust chance-constrained vehicle routing problem, Operations Research, 68 (2020), 716-732.
doi: 10.1287/opre.2019.1924.
|
[75]
|
A. L. Gibbs and F. E. Su, On choosing and bounding probability metrics, International Statistical Review, 70 (2002), 419-435.
|
[76]
|
M. Á. Goberna and M. A. López, Semi-Infinite Programming: Recent Advances, Springer Science & Business Media, 2013.
doi: 10.1007/0-387-26771-9_1.
|
[77]
|
J. Goh and M. Sim, Distributionally robust optimization and its tractable approximations, Operations Research, 58 (2010), 902-917.
doi: 10.1287/opre.1090.0795.
|
[78]
|
I. J. Goodfellow, J. Shlens and C. Szegedy, Explaining and harnessing adversarial examples, arXiv: 1412.6572.
|
[79]
|
S. Guo, H. Xu and L. Zhang, Probability approximation schemes for stochastic programs with distributionally robust second-order dominance constraints, Optimization Methods and Software, 32 (2017), 770-789.
doi: 10.1080/10556788.2016.1175003.
|
[80]
|
V. Gupta, Near-optimal bayesian ambiguity sets for distributionally robust optimization, Management Science, 65 (2019), 4242-4260.
|
[81]
|
S.-Å. Gustafson, Semi-infinite programming: Methods for linear problems, in Encyclopedia of Optimization, Springer, (2009), 3424–3429.
|
[82]
|
G. A. Hanasusanto and D. Kuhn, Conic programming reformulations of two-stage distributionally robust linear programs over wasserstein balls, Operations Research, 66 (2018), 849-869.
doi: 10.1287/opre.2017.1698.
|
[83]
|
G. A. Hanasusanto, D. Kuhn, S. W. Wallace and S. Zymler, Distributionally robust multi-item newsvendor problems with multimodal demand distributions, Mathematical Programming, 152 (2015), 1-32.
doi: 10.1007/s10107-014-0776-y.
|
[84]
|
G. A. Hanasusanto, V. Roitch, D. Kuhn and W. Wiesemann, A distributionally robust perspective on uncertainty quantification and chance constrained programming, Mathematical Programming, 151 (2015), 35-62.
doi: 10.1007/s10107-015-0896-z.
|
[85]
|
R. Hettich, A. Kaplan and R. Tichatschke, Semi-infinite programming: Numerical methods, in Encyclopedia of Optimization, Springer, (2009), 3429–3434.
|
[86]
|
R. Hettich and K. O. Kortanek, Semi-infinite programming: theory, methods, and applications, SIAM Review, 35 (1993), 380-429.
doi: 10.1137/1035089.
|
[87]
|
Z. Hu and L. J. Hong, Kullback-leibler divergence constrained distributionally robust optimization, Available at Optimization Online.
|
[88]
|
K. Huang, H. Yang, I. King, M. R. Lyu and L. Chan, The minimum error minimax probability machine, Journal of Machine Learning Research, 5 (2004), 1253-1286.
|
[89]
|
G. Infanger, Planning under uncertainty solving large-scale stochastic linear programs, Technical report, Stanford University, 1992.
|
[90]
|
K. Isii, On sharpness of tchebycheff-type inequalities, Annals of the Institute of Statistical Mathematics, 14 (1962), 185-197.
doi: 10.1007/BF02868641.
|
[91]
|
R. Ji and M. A. Lejeune, Data-driven distributionally robust chance-constrained optimization with wasserstein metric, Journal of Global Optimization, (2020), 1–33.
doi: 10.1007/s10898-020-00966-0.
|
[92]
|
R. Jiang and Y. Guan, Data-driven chance constrained stochastic program, Mathematical Programming, 158 (2016), 291-327.
doi: 10.1007/s10107-015-0929-7.
|
[93]
|
R. Jiang and Y. Guan, Risk-averse two-stage stochastic program with distributional ambiguity, Operations Research, 66 (2018), 1390-1405.
doi: 10.1287/opre.2018.1729.
|
[94]
|
R. Jiang, M. Ryu and G. Xu, Data-driven distributionally robust appointment scheduling over wasserstein balls, arXiv: 1907.03219.
|
[95]
|
P. Kall, S. W. Wallace and P. Kall, Stochastic Programming, Springer, 1994.
|
[96]
|
Z. Kang, X. Li, Z. Li and S. Zhu, Data-driven robust mean-cvar portfolio selection under distribution ambiguity, Quantitative Finance, 19 (2019), 105-121.
doi: 10.1080/14697688.2018.1466057.
|
[97]
|
L. V. Kantorovich, On the translocation of masses, Journal of Mathematical Sciences, 133 (2006), 1381-1382.
doi: 10.1007/s10958-006-0049-2.
|
[98]
|
D. Klabjan, D. Simchi-Levi and M. Song, Robust stochastic lot-sizing by means of histograms, Production and Operations Management, 22 (2013), 691-710.
|
[99]
|
Ç. Koçyiğit, G. Iyengar, D. Kuhn and W. Wiesemann, Distributionally robust mechanism design, Management Science, 66 (2020), 159-189.
|
[100]
|
D. Kuhn, P. M. Esfahani, V. A. Nguyen and S. Shafieezadeh-Abadeh, Wasserstein distributionally robust optimization: Theory and applications in machine learning, in Operations Research & Management Science in the Age of Analytics, INFORMS, (2019), 130–166.
doi: 10.3770/j.issn:2095-2651.2021.01.010.
|
[101]
|
S. Kullback, Information Theory and Statistics, Courier Corporation, Mineola, 1997.
|
[102]
|
G. Lanckriet, L. E. Ghaoui, C. Bhattacharyya and M. I. Jordan, Minimax probability machine, in Advances in neural information processing systems, (2001), 801–807.
|
[103]
|
G. R. Lanckriet, L. E. Ghaoui, C. Bhattacharyya and M. I. Jordan, A robust minimax approach to classification, Journal of Machine Learning Research, 3 (2002), 555-582.
doi: 10.1162/153244303321897726.
|
[104]
|
H. J. Landau, Maximum entropy and the moment problem, Bulletin of the American Mathematical Society, 16 (1987), 47-77.
doi: 10.1090/S0273-0979-1987-15464-4.
|
[105]
|
C. Lee and S. Mehrotra, A distributionally-robust approach for finding support vector machines, 2015.
|
[106]
|
S. Lee, H. Kim and I. Moon, A data-driven distributionally robust newsvendor model with a wasserstein ambiguity set, Journal of the Operational Research Society, (2020), 1–19.
|
[107]
|
D. Levy, Y. Carmon, J. C. Duchi and A. Sidford, Large-scale methods for distributionally robust optimization, Advances in Neural Information Processing Systems, 33.
|
[108]
|
A. S. Lewis and C. J. Pang, Lipschitz behavior of the robust regularization, SIAM Journal on Control and Optimization, 48 (2010), 3080-3104.
doi: 10.1137/08073682X.
|
[109]
|
J. Y. Li and R. H. Kwon, Portfolio selection under model uncertainty: a penalized moment-based optimization approach, Journal of Global Optimization, 56 (2013), 131-164.
doi: 10.1007/s10898-012-9969-1.
|
[110]
|
G. D. Lin, Recent developments on the moment problem, Journal of Statistical Distributions and Applications, 4 (2017), 1-17.
|
[111]
|
Q. Lin, R. Loxton, K. L. Teo, Y. H. Wu and C. Yu, A new exact penalty method for semi-infinite programming problems, Journal of Computational and Applied Mathematics, 261 (2014), 271-286.
doi: 10.1016/j.cam.2013.11.010.
|
[112]
|
J. Liu, Z. Chen, A. Lisser and Z. Xu, Closed-form optimal portfolios of distributionally robust mean-cvar problems with unknown mean and variance, Applied Mathematics & Optimization, 79 (2019), 671-693.
doi: 10.1007/s00245-017-9452-y.
|
[113]
|
Y. Liu, R. Meskarian and H. Xu, Distributionally robust reward-risk ratio optimization with moment constraints, SIAM Journal on Optimization, 27 (2017), 957-985.
doi: 10.1137/16M106114X.
|
[114]
|
F. Luo and S. Mehrotra, Decomposition algorithm for distributionally robust optimization using wasserstein metric with an application to a class of regression models, European Journal of Operational Research, 278 (2019), 20-35.
doi: 10.1016/j.ejor.2019.03.008.
|
[115]
|
C. Lyu, K. Huang and H.-N. Liang, A unified gradient regularization family for adversarial examples, in 2015 IEEE International Conference on Data Mining, IEEE, (2015), 301–309.
|
[116]
|
A. Majumdar, G. Hall and A. A. Ahmadi, Recent scalability improvements for semidefinite programming with applications in machine learning, control, and robotics, Annual Review of Control, Robotics, and Autonomous Systems, 3 (2020), 331-360.
|
[117]
|
S. Mehrotra and D. Papp, A cutting surface algorithm for semi-infinite convex programming with an application to moment robust optimization, SIAM Journal on Optimization, 24 (2014), 1670-1697.
doi: 10.1137/130925013.
|
[118]
|
S. Mehrotra and H. Zhang, Models and algorithms for distributionally robust least squares problems, Mathematical Programming, 146 (2014), 123-141.
doi: 10.1007/s10107-013-0681-9.
|
[119]
|
R. O. Michaud, The markowitz optimization enigma: Is 'optimized' optimal?, Financial Analysts Journal, 45 (1989), 31-42.
|
[120]
|
H. Mostafaei and S. Kordnourie, Probability metrics and their applications, Applied Mathematical Sciences, 5 (2011), 181-192.
|
[121]
|
H. Namkoong and J. C. Duchi, Stochastic gradient methods for distributionally robust optimization with f-divergences, NIPS, 29 (2016), 2208-2216.
|
[122]
|
K. Natarajan, M. Sim and J. Uichanco, Tractable robust expected utility and risk models for portfolio optimization, Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 20 (2010), 695-731.
doi: 10.1111/j.1467-9965.2010.00417.x.
|
[123]
|
K. Natarajan and C.-P. Teo, On reduced semidefinite programs for second order moment bounds with applications, Mathematical Programming, 161 (2017), 487-518.
doi: 10.1007/s10107-016-1019-1.
|
[124]
|
A. Nemirovski, A. Juditsky, G. Lan and A. Shapiro, Robust stochastic approximation approach to stochastic programming, SIAM Journal on Optimization, 19 (2009), 1574-1609.
doi: 10.1137/070704277.
|
[125]
|
A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs, SIAM Journal on Optimization, 17 (2007), 969-996.
doi: 10.1137/050622328.
|
[126]
|
V. A. Nguyen, D. Kuhn and P. M. Esfahani, Distributionally robust inverse covariance estimation: The wasserstein shrinkage estimator, arXiv: 1805.07194.
|
[127]
|
V. A. Nguyen, S. Shafieezadeh-Abadeh, D. Kuhn and P. M. Esfahani, Bridging bayesian and minimax mean square error estimation via wasserstein distributionally robust optimization, arXiv: 1911.03539.
|
[128]
|
A. B. Owen, Empirical Likelihood, CRC Press, 2001.
|
[129]
|
L. Pardo, Statistical Inference Based on Divergence Measures, CRC Press, 2018.
|
[130]
|
G. C. Pflug and A. Pichler, Approximations for probability distributions and stochastic optimization problems, in Stochastic Optimization Methods in Finance and Energy, Springer, 2011,343–387.
doi: 10.1007/978-1-4419-9586-5_15.
|
[131]
|
R. R. Phelps, Lectures on Choquet's Theorem, Springer Science & Business Media, 2001.
doi: 10.1007/b76887.
|
[132]
|
A. B. Philpott, V. L. de Matos and L. Kapelevich, Distributionally robust sddp, Computational Management Science, 15 (2018), 431-454.
doi: 10.1007/s10287-018-0314-0.
|
[133]
|
I. Popescu, A semidefinite programming approach to optimal-moment bounds for convex classes of distributions, Mathematics of Operations Research, 30 (2005), 632-657.
doi: 10.1287/moor.1040.0137.
|
[134]
|
I. Popescu, Robust mean-covariance solutions for stochastic optimization, Operations Research, 55 (2007), 98-112.
doi: 10.1287/opre.1060.0353.
|
[135]
|
K. Postek, D. den Hertog and B. Melenberg, Computationally tractable counterparts of distributionally robust constraints on risk measures, SIAM Review, 58 (2016), 603-650.
doi: 10.1137/151005221.
|
[136]
|
M. A. Proschan and P. A. Shaw, Essentials of Probability Theory for Statisticians, CRC Press, 2018.
|
[137]
|
H. Rahimian, G. Bayraksan and T. Homem-de Mello, Identifying effective scenarios in distributionally robust stochastic programs with total variation distance, Mathematical Programming, 173 (2019), 393-430.
doi: 10.1007/s10107-017-1224-6.
|
[138]
|
H. Rahimian and S. Mehrotra, Distributionally robust optimization: A review, arXiv: 1908.05659.
|
[139]
|
M. Riis and K. A. Andersen, Applying the minimax criterion in stochastic recourse programs, European Journal of Operational Research, 165 (2005), 569-584.
doi: 10.1016/j.ejor.2003.09.033.
|
[140]
|
R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.
|
[141]
|
Y. Rubner, C. Tomasi and L. J. Guibas, The earth mover's distance as a metric for image retrieval, International Journal of Computer Vision, 40 (2000), 99-121.
doi: 10.1007/3-540-46238-4_2.
|
[142]
|
N. Rujeerapaiboon, D. Kuhn and W. Wiesemann, Robust growth-optimal portfolios, Management Science, 62 (2016), 2090-2109.
|
[143]
|
N. Rujeerapaiboon, D. Kuhn and W. Wiesemann, Chebyshev inequalities for products of random variables, Mathematics of Operations Research, 43 (2018), 887-918.
doi: 10.1287/moor.2017.0888.
|
[144]
|
L. Rüschendorf, Bounds for distributions with multivariate marginals, Lecture Notes-Monograph Series, (1991), 285–310.
doi: 10.1214/lnms/1215459862.
|
[145]
|
H. Scarf, A min-max solution of an inventory problem, Studies in the Mathematical Theory of Inventory and Production.
|
[146]
|
S. Shafieezadeh-Abadeh, D. Kuhn and P. M. Esfahani, Regularization via mass transportation, Journal of Machine Learning Research, 20 (2019), 1-68.
|
[147]
|
S. Shafieezadeh Abadeh, P. M. Mohajerin Esfahani and D. Kuhn, Distributionally robust logistic regression, Advances in Neural Information Processing Systems, 28 (2015), 1576-1584.
|
[148]
|
S. Shafieezadeh-Abadeh, V. A. Nguyen, D. Kuhn and P. M. Esfahani, Wasserstein distributionally robust kalman filtering, in Advances in Neural Information Processing Systems, vol. 31, Curran Associates, Inc., 2018, 8474–8483.
|
[149]
|
U. Shaham, Y. Yamada and S. Negahban, Understanding adversarial training: Increasing local stability of supervised models through robust optimization, Neurocomputing, 307 (2018), 195-204.
|
[150]
|
S. Shalev-Shwartz and Y. Wexler, Minimizing the maximal loss: How and why, in International Conference on Machine Learning, PMLR, 2016,793–801.
|
[151]
|
C. Shang and F. You, Distributionally robust optimization for planning and scheduling under uncertainty, Computers & Chemical Engineering, 110 (2018), 53-68.
|
[152]
|
A. Shapiro, On duality theory of conic linear problems, in Semi-infinite Programming, Springer, Boston, MA, 2001,135–165.
doi: 10.1007/978-1-4757-3403-4_7.
|
[153]
|
A. Shapiro, Worst-case distribution analysis of stochastic programs, Mathematical Programming, 107 (2006), 91-96.
doi: 10.1007/s10107-005-0680-6.
|
[154]
|
A. Shapiro, Semi-infinite programming, duality, discretization and optimality conditions, Optimization, 58 (2009), 133-161.
doi: 10.1080/02331930902730070.
|
[155]
|
A. Shapiro, Distributionally robust stochastic programming, SIAM Journal on Optimization, 27 (2017), 2258-2275.
doi: 10.1137/16M1058297.
|
[156]
|
A. Shapiro, Tutorial on risk neutral, distributionally robust and risk averse multistage stochastic programming, European Journal of Operational Research, 288 (2020), 1-13.
doi: 10.1016/j.ejor.2020.03.065.
|
[157]
|
A. Shapiro and S. Ahmed, On a class of minimax stochastic programs, SIAM Journal on Optimization, 14 (2004), 1237-1249.
doi: 10.1137/S1052623403434012.
|
[158]
|
A. Shapiro, D. Dentcheva and A. Ruszczyński, Lectures on Stochastic Programming: Modeling and Theory, 2nd edition, SIAM, Philadelphia, PA, 2014.
|
[159]
|
A. Shapiro and A. Kleywegt, Minimax analysis of stochastic problems, Optimization Methods and Software, 17 (2002), 523-542.
doi: 10.1080/1055678021000034008.
|
[160]
|
K. S. Shehadeh, A. E. Cohn and R. Jiang, A distributionally robust optimization approach for outpatient colonoscopy scheduling, European Journal of Operational Research, 283 (2020), 549-561.
doi: 10.1016/j.ejor.2019.11.039.
|
[161]
|
A. Sinha, H. Namkoong and J. Duchi, Certifying some distributional robustness with principled adversarial training, in International Conference on Learning Representations, 2018.
|
[162]
|
J. E. Smith, Generalized chebychev inequalities: theory and applications in decision analysis, Operations Research, 43 (1995), 807-825.
doi: 10.1287/opre.43.5.807.
|
[163]
|
J. E. Smith and R. L. Winkler, The optimizer's curse: Skepticism and postdecision surprise in decision analysis, Management Science, 52 (2006), 311-322.
|
[164]
|
A. M.-C. So, Moment inequalities for sums of random matrices and their applications in optimization, Mathematical Programming, 130 (2011), 125-151.
doi: 10.1007/s10107-009-0330-5.
|
[165]
|
A. L. Soyster, Convex programming with set-inclusive constraints and applications to inexact linear programming, Operations Research, 21 (1973), 1154-1157.
doi: 10.1287/opre.22.4.892.
|
[166]
|
A. Spanos, Probability Theory and Statistical Inference: Econometric Modeling with Observational Data, Cambridge University Press, Cambridge, 1999.
doi: 10.1017/CBO9780511754081.
|
[167]
|
G. Still, Optimization problems with infinitely many constraints, Buletinul tiinific al Universitatii Baia Mare, Seria B, Fascicola matematică-informatică, 18 (2002), 343–354.
|
[168]
|
T. Strohmann and G. Z. Grudic, A formulation for minimax probability machine regression, in NIPS, Citeseer, 2002,769–776.
|
[169]
|
H. Sun and H. Xu, Convergence analysis for distributionally robust optimization and equilibrium problems, Mathematics of Operations Research, 41 (2016), 377-401.
doi: 10.1287/moor.2015.0732.
|
[170]
|
S. Takriti and S. Ahmed, Managing short-term electricity contracts under uncertainty: A minimax approach, 2002.
|
[171]
|
B. P. Van Parys, P. M. Esfahani and D. Kuhn, From data to decisions: Distributionally robust optimization is optimal, Management Science, (2020), preprint.
|
[172]
|
B. P. Van Parys, P. J. Goulart and D. Kuhn, Generalized gauss inequalities via semidefinite programming, Mathematical Programming, 156 (2016), 271-302.
doi: 10.1007/s10107-015-0878-1.
|
[173]
|
B. P. Van Parys, P. J. Goulart and M. Morari, Distributionally robust expectation inequalities for structured distributions, Mathematical Programming, 173 (2019), 251-280.
doi: 10.1007/s10107-017-1220-x.
|
[174]
|
L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Review, 38 (1996), 49-95.
doi: 10.1137/1038003.
|
[175]
|
L. Vandenberghe, S. Boyd and K. Comanor, Generalized chebyshev bounds via semidefinite programming, SIAM Review, 49 (2007), 52-64.
doi: 10.1137/S0036144504440543.
|
[176]
|
C. Villani, Optimal Transport: Old and New, vol. 338, Springer Science & Business Media, 2008.
doi: 10.1007/978-3-540-71050-9.
|
[177]
|
M. R. Wagner, Stochastic 0–1 linear programming under limited distributional information, Operations Research Letters, 36 (2008), 150-156.
doi: 10.1016/j.orl.2007.07.003.
|
[178]
|
A. Wald, Statistical decision functions which minimize the maximum risk, Annals of Mathematics, 46 (1945), 265-280.
doi: 10.2307/1969022.
|
[179]
|
A. Wald, Statistical decision functions, in Breakthroughs in Statistics, Springer, 1992,342–357.
|
[180]
|
C. Wang, R. Gao, F. Qiu, J. Wang and L. Xin, Risk-based distributionally robust optimal power flow with dynamic line rating, IEEE Transactions on Power Systems, 33 (2018), 6074-6086.
|
[181]
|
C. Wang, R. Gao, W. Wei, M. Shafie-khah, T. Bi and J. P. Catalao, Risk-based distributionally robust optimal gas-power flow with wasserstein distance, IEEE Transactions on Power Systems, 34 (2018), 2190-2204.
|
[182]
|
S. Wang and Y. Yuan, Feasible method for semi-infinite programs, SIAM Journal on Optimization, 25 (2015), 2537-2560.
doi: 10.1137/140982143.
|
[183]
|
Z. Wang, K. You, S. Song and Y. Zhang, Wasserstein distributionally robust shortest path problem, European Journal of Operational Research, 284 (2020), 31-43.
doi: 10.1016/j.ejor.2020.01.009.
|
[184]
|
Z. Wang, P. W. Glynn and Y. Ye, Likelihood robust optimization for data-driven problems, Computational Management Science, 13 (2016), 241-261.
doi: 10.1007/s10287-015-0240-3.
|
[185]
|
W. Wiesemann, D. Kuhn and B. Rustem, Robust markov decision processes, Mathematics of Operations Research, 38 (2013), 153-183.
doi: 10.1287/moor.1120.0566.
|
[186]
|
W. Wiesemann, D. Kuhn and M. Sim, Distributionally robust convex optimization, Operations Research, 62 (2014), 1358-1376.
doi: 10.1287/opre.2014.1314.
|
[187]
|
L. A. Wolsey, Integer Programming, Wiley Online Library, 1998.
|
[188]
|
D. Wozabal, Robustifying convex risk measures for linear portfolios: A nonparametric approach, Operations Research, 62 (2014), 1302-1315.
doi: 10.1287/opre.2014.1323.
|
[189]
|
H. Xu, C. Caramanis and S. Mannor, Robustness and regularization of support vector machines, Journal of Machine Learning Research, 10 (2009), 1485-1510.
|
[190]
|
H. Xu, C. Caramanis and S. Mannor, Robust regression and lasso, IEEE Transactions on Information Theory, 56 (2010), 3561-3574.
doi: 10.1109/TIT.2010.2048503.
|
[191]
|
H. Xu, C. Caramanis and S. Mannor, A distributional interpretation of robust optimization, Mathematics of Operations Research, 37 (2012), 95-110.
doi: 10.1287/moor.1110.0531.
|
[192]
|
H. Xu, Y. Liu and H. Sun, Distributionally robust optimization with matrix moment constraints: Lagrange duality and cutting plane methods, Mathematical Programming, 169 (2018), 489-529.
doi: 10.1007/s10107-017-1143-6.
|
[193]
|
M. Xu, S.-Y. Wu and J. Y. Jane, Solving semi-infinite programs by smoothing projected gradient method, Computational Optimization and Applications, 59 (2014), 591-616.
doi: 10.1007/s10589-014-9654-z.
|
[194]
|
I. Yang, A convex optimization approach to distributionally robust markov decision processes with wasserstein distance, IEEE Control Systems Letters, 1 (2017), 164-169.
|
[195]
|
I. Yang, Wasserstein distributionally robust stochastic control: A data-driven approach, IEEE Transactions on Automatic Control, (2020), 1-8.
|
[196]
|
X. Yang, Z. Chen and J. Zhou, Optimality conditions for semi-infinite and generalized semi-infinite programs via lower order exact penalty functions, Journal of Optimization Theory and Applications, 169 (2016), 984-1012.
doi: 10.1007/s10957-016-0914-1.
|
[197]
|
Y. Ye, Interior Point Algorithms: Theory and Analysis, John Wiley & Sons, 2011.
doi: 10.1002/9781118032701.
|
[198]
|
M. Yildirim, X. A. Sun and N. Z. Gebraeel, Sensor-driven condition-based generator maintenance scheduling-part i: Maintenance problem, IEEE Transactions on Power Systems, 31 (2016), 4253-4262.
|
[199]
|
J. Yue, B. Chen and M.-C. Wang, Expected value of distribution information for the newsvendor problem, Operations Research, 54 (2006), 1128-1136.
doi: 10.1287/opre.1060.0318.
|
[200]
|
Y. Zhang, R. Jiang and S. Shen, Ambiguous chance-constrained binary programs under mean-covariance information, SIAM Journal on Optimization, 28 (2018), 2922-2944.
doi: 10.1137/17M1158707.
|
[201]
|
Y. Zhang, S. Song, Z.-J. M. Shen and C. Wu, Robust shortest path problem with distributional uncertainty, IEEE transactions on intelligent transportation systems, 19 (2017), 1080-1090.
|
[202]
|
A. Zhou, M. Yang, M. Wang and Y. Zhang, A linear programming approximation of distributionally robust chance-constrained dispatch with wasserstein distance, IEEE Transactions on Power Systems, 35 (2020), 3366-3377.
|
[203]
|
Z. Zhu, J. Zhang and Y. Ye, Newsvendor optimization with limited distribution information, Optimization Methods and Software, 28 (2013), 640-667.
doi: 10.1080/10556788.2013.768994.
|
[204]
|
J. Zou, S. Ahmed and X. A. Sun, Stochastic dual dynamic integer programming, Mathematical Programming, 175 (2019), 461-502.
doi: 10.1007/s10107-018-1249-5.
|
[205]
|
S. Zymler, D. Kuhn and B. Rustem, Distributionally robust joint chance constraints with second-order moment information, Mathematical Programming, 137 (2013), 167-198.
doi: 10.1007/s10107-011-0494-7.
|