doi: 10.3934/naco.2021060
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Robust optimum design of tuned mass dampers for high-rise buildings subject to wind-induced vibration

1. 

Federal University of Rio Grande do Sul (UFRGS), Postgraduate Program in Civil Engineering, Av. Osvaldo Aranha 99, 90035-190 Porto Alegre, RS, Brazil

2. 

Federal University of Rio Grande do Sul (UFRGS), Department of Mechanical Engineering, Av. Sarmento Leite 425, 90050-170 Porto Alegre, RS, Brazil

*Corresponding author: Bibiana Bertolin Rossato

Received  June 2021 Revised  November 2021 Early access December 2021

Fund Project: The first author is supported by CNPq grant 130511/2018–8

Control devices are commonly applied to suppress structural displacement due to dynamic loads. In this work, a study of the optimum tuned mass dampers (TMDs) design was carried out, installed in a high-rise building subject to wind-induced vibration. Tuned mass dampers are the most known passive energy device and their design are an important area of study. A mathematical model to consider the wind force in the time domain was introduced. A procedure to obtain the robust design of tuned mass dampers was proposed through the optimization under uncertainties, which considers the uncertainties present in the structural properties of the building and also in the dynamic excitation. This method led to the robust design of TMDs, whereas the device performance became insensitive to the randomness of the input variables of the optimization problem. The robust design was compared with a design obtained by a deterministic optimization and the advantages of using an optimization under uncertainties are shown. In addition, the proposed methodology was compared with traditional TMD design methods, showing again the superiority of the proposed methodology.

Citation: Bibiana Bertolin Rossato, Letícia Fleck Fadel Miguel. Robust optimum design of tuned mass dampers for high-rise buildings subject to wind-induced vibration. Numerical Algebra, Control and Optimization, doi: 10.3934/naco.2021060
References:
[1]

ABNT - Brazilian Association of Technical Standards, NBR 6123: Foras devidas ao vento em edificaes, Rio de Janeiro, Brazil, 1988.

[2]

V. BoonyapinyoA. Aksorn and P. Lukkunaprasit, Suppression of aerodynamic response of suspension bridges during erection and after completion by using tuned mass dampers, Wind and Structures, 10 (2007), 1-22.  doi: 10.12989/was.2007.10.1.001.

[3]

F. S. Brando and L. F. F. Miguel, Vibration control in buildings under seismic excitation using optimized tuned mass dampers, Frattura ed Integrità Strutturale, 54 (2020), 66-87.  doi: 10.3221/IGF-ESIS.54.05.

[4]

G. Chen and J. Wu, Experimental study on multiple tuned mass dampers to reduce seismic responses of a three-storey building structure, Earthquake Engineering and Structural Dynamics, 32 (2003), 793-810. 

[5]

J. P. Den Hartog, in Mechanical Vibration (4th ed), McGraw-Hill, New York, (1956).

[6]

S. Elias and V. Matsagar, Optimum tuned mass damper for wind and earthquake response control of high-rise building, In: Advances in Structural Engineering (eds. V. Matsagar), Springer, New Delhi

[7]

M. S. GonalvesR. H. Lopez and L. F. F. Miguel, Search group algorithm: A new metaheuristic method for the optimization of truss structures, Computers and Structures, 153 (2015), 165-184.  doi: 10.1016/j.compstruc.2015.03.003.

[8]

L. IerimontiI. Venanzi and L. Caracoglia, Life-cycle damage-based cost analysis of tall buildings equipped with tuned mass dampers, Journal of Wind Engineering and Industrial Aerodynamics, 14 (2018), 54-64. 

[9]

T. Igusa and K. Xu, Vibration control using multiple tuned mass dampers, Journal of Sound and Vibration, 175 (1994), 491-503. 

[10]

J. C. Kaimal, Spectral characteristics of surface-layer turbulence, Quart J Roy Meteorol Soc, 98 (1972), 563-589.  doi: 10.1002/qj.49709841707.

[11]

A. KareemT. Kijewski and Y. Tamura, Mitigation of motions of tall buildings with specific examples of recent applications, Wind and Structures, 2 (1999), 201-251.  doi: 10.12989/was.1999.2.3.201.

[12]

A. KawaguchiA. Teramura and Y. Omote, Time history response of a tall building with a tuned mass damper under wind force, Journal of Wind Engineering and Industrial Aerodynamics, 43 (1992), 1946-1960.  doi: 10.1016/0167-6105(92)90625-k.

[13]

C-L. Lee, Optimal design theories and applications of tuned mass dampers, Engineering Structures, 28 (2006), 43-53.  doi: 10.1016/j.engstruct.2005.06.023.

[14]

M. Y. Liu, Analytical and experimental research on wind-induced vibration in high-rise buildings with tuned liquid column dampers, Wind and Structures, 6 (2003), 71-90.  doi: 10.12989/was.2003.6.1.071.

[15]

M. Y. Liu, Wind-induced vibration of high-rise building with tuned mass damper including soil-structure interaction, Journal of Wind Engineering and Industrial Aerodynamics, 96 (2008), 1092-1102.  doi: 10.1016/j.jweia.2007.06.034.

[16]

Q. Liu, Optimal design of wind-induced vibration control of tall buildings and high-rise structures, Wind and Structures, 2 (1999), 69-83.  doi: 10.12989/was.1999.2.1.069.

[17]

G. C. Marano, Robust optimum design of tuned mass dampers devices in random vibrations mitigation, Journal of Sound and Vibration, 313 (2008), 472-492.  doi: 10.1016/j.jsv.2007.12.020.

[18]

L. F. F. Miguel, A novel approach to the optimum design of MTMDs under seismic excitations, Structural Control and Health Monitoring, 23 (2016), 1290-1313.  doi: 10.1002/stc.1845.

[19]

L. F. F. Miguel, Assessment of code recommendations through simulation of EPS wind loads along a segment of a transmission line, Engineering Structures, 43 (2012), 1-11.  doi: 10.1016/j.engstruct.2012.05.004.

[20]

M. Mohebbi, Designing optimal multiple tuned mass dampers using genetic algorithms (GA) for mitigating the seismic response of structures, Journal of Vibration and Control, 19 (2013), 605-625.  doi: 10.1177/1077546311434520.

[21]

V. B. Patil and R. S. Jangid, Optimum multiple tuned mass dampers for wind excited benchmark building, Journal of Civil Engineering and Management, 17 (2011), 540-557. 

[22]

R. Rana and T. T. Soong, Parametric study and simplified design of tuned mass dampers", Engineering Structures, Engineering Structures, 20(3) (1998), 193-204.  doi: 10.1016/S0141-0296(97)00078-3.

[23]

M. Shinozuka and C. M. Jan, Digital simulation of random processes and its applications, Journal of Sound and Vibration, 25 (1972), 111-128.  doi: 10.1016/0022-460x(72)90600-1.

[24]

H. Tanaka and C. Y. Mak, Effect of tuned mass dampers on wind induced response of tall buildings, Journal of Wind Engineering and Industrial Aerodynamics, 14 (1983), 357-368. 

[25]

L. S. Vellar, Robust optimum design of multiple tuned mass dampers for vibration control in buildings subjected to seismic excitation, Shock and Vibration, 1 (2019), 1-9.  doi: 10.1007/s00158-014-1129-4.

[26]

I. Venanzi, Robust optimal design of tuned mass dampers for tall buildings with uncertain parameters, Industrial Structural and Multidisciplinary Optimization, 51 (2015), 239-250.  doi: 10.1007/s00158-014-1129-4.

[27]

G. B. Warburton, Optimum absorbers parameters for various combinations of response and excitation, Earthquake Engineering and Structural Dynamics, 10(3) (1982), 381-401.  doi: 10.1002/eqe.4290100304.

[28]

C. Yang, Benchmark problem for response control of wind-excited tall buildings, Journal of Engineering Mechanics, 130 (2004), 437-446.  doi: 10.1061/(asce)0733-9399(2004)130:4(437).

[29]

C. Zang, A review of robust optimal design and its application in dynamics, Computers and Structures, 83 (2005), 315-326.  doi: 10.1016/j.compstruc.2004.10.007.

show all references

References:
[1]

ABNT - Brazilian Association of Technical Standards, NBR 6123: Foras devidas ao vento em edificaes, Rio de Janeiro, Brazil, 1988.

[2]

V. BoonyapinyoA. Aksorn and P. Lukkunaprasit, Suppression of aerodynamic response of suspension bridges during erection and after completion by using tuned mass dampers, Wind and Structures, 10 (2007), 1-22.  doi: 10.12989/was.2007.10.1.001.

[3]

F. S. Brando and L. F. F. Miguel, Vibration control in buildings under seismic excitation using optimized tuned mass dampers, Frattura ed Integrità Strutturale, 54 (2020), 66-87.  doi: 10.3221/IGF-ESIS.54.05.

[4]

G. Chen and J. Wu, Experimental study on multiple tuned mass dampers to reduce seismic responses of a three-storey building structure, Earthquake Engineering and Structural Dynamics, 32 (2003), 793-810. 

[5]

J. P. Den Hartog, in Mechanical Vibration (4th ed), McGraw-Hill, New York, (1956).

[6]

S. Elias and V. Matsagar, Optimum tuned mass damper for wind and earthquake response control of high-rise building, In: Advances in Structural Engineering (eds. V. Matsagar), Springer, New Delhi

[7]

M. S. GonalvesR. H. Lopez and L. F. F. Miguel, Search group algorithm: A new metaheuristic method for the optimization of truss structures, Computers and Structures, 153 (2015), 165-184.  doi: 10.1016/j.compstruc.2015.03.003.

[8]

L. IerimontiI. Venanzi and L. Caracoglia, Life-cycle damage-based cost analysis of tall buildings equipped with tuned mass dampers, Journal of Wind Engineering and Industrial Aerodynamics, 14 (2018), 54-64. 

[9]

T. Igusa and K. Xu, Vibration control using multiple tuned mass dampers, Journal of Sound and Vibration, 175 (1994), 491-503. 

[10]

J. C. Kaimal, Spectral characteristics of surface-layer turbulence, Quart J Roy Meteorol Soc, 98 (1972), 563-589.  doi: 10.1002/qj.49709841707.

[11]

A. KareemT. Kijewski and Y. Tamura, Mitigation of motions of tall buildings with specific examples of recent applications, Wind and Structures, 2 (1999), 201-251.  doi: 10.12989/was.1999.2.3.201.

[12]

A. KawaguchiA. Teramura and Y. Omote, Time history response of a tall building with a tuned mass damper under wind force, Journal of Wind Engineering and Industrial Aerodynamics, 43 (1992), 1946-1960.  doi: 10.1016/0167-6105(92)90625-k.

[13]

C-L. Lee, Optimal design theories and applications of tuned mass dampers, Engineering Structures, 28 (2006), 43-53.  doi: 10.1016/j.engstruct.2005.06.023.

[14]

M. Y. Liu, Analytical and experimental research on wind-induced vibration in high-rise buildings with tuned liquid column dampers, Wind and Structures, 6 (2003), 71-90.  doi: 10.12989/was.2003.6.1.071.

[15]

M. Y. Liu, Wind-induced vibration of high-rise building with tuned mass damper including soil-structure interaction, Journal of Wind Engineering and Industrial Aerodynamics, 96 (2008), 1092-1102.  doi: 10.1016/j.jweia.2007.06.034.

[16]

Q. Liu, Optimal design of wind-induced vibration control of tall buildings and high-rise structures, Wind and Structures, 2 (1999), 69-83.  doi: 10.12989/was.1999.2.1.069.

[17]

G. C. Marano, Robust optimum design of tuned mass dampers devices in random vibrations mitigation, Journal of Sound and Vibration, 313 (2008), 472-492.  doi: 10.1016/j.jsv.2007.12.020.

[18]

L. F. F. Miguel, A novel approach to the optimum design of MTMDs under seismic excitations, Structural Control and Health Monitoring, 23 (2016), 1290-1313.  doi: 10.1002/stc.1845.

[19]

L. F. F. Miguel, Assessment of code recommendations through simulation of EPS wind loads along a segment of a transmission line, Engineering Structures, 43 (2012), 1-11.  doi: 10.1016/j.engstruct.2012.05.004.

[20]

M. Mohebbi, Designing optimal multiple tuned mass dampers using genetic algorithms (GA) for mitigating the seismic response of structures, Journal of Vibration and Control, 19 (2013), 605-625.  doi: 10.1177/1077546311434520.

[21]

V. B. Patil and R. S. Jangid, Optimum multiple tuned mass dampers for wind excited benchmark building, Journal of Civil Engineering and Management, 17 (2011), 540-557. 

[22]

R. Rana and T. T. Soong, Parametric study and simplified design of tuned mass dampers", Engineering Structures, Engineering Structures, 20(3) (1998), 193-204.  doi: 10.1016/S0141-0296(97)00078-3.

[23]

M. Shinozuka and C. M. Jan, Digital simulation of random processes and its applications, Journal of Sound and Vibration, 25 (1972), 111-128.  doi: 10.1016/0022-460x(72)90600-1.

[24]

H. Tanaka and C. Y. Mak, Effect of tuned mass dampers on wind induced response of tall buildings, Journal of Wind Engineering and Industrial Aerodynamics, 14 (1983), 357-368. 

[25]

L. S. Vellar, Robust optimum design of multiple tuned mass dampers for vibration control in buildings subjected to seismic excitation, Shock and Vibration, 1 (2019), 1-9.  doi: 10.1007/s00158-014-1129-4.

[26]

I. Venanzi, Robust optimal design of tuned mass dampers for tall buildings with uncertain parameters, Industrial Structural and Multidisciplinary Optimization, 51 (2015), 239-250.  doi: 10.1007/s00158-014-1129-4.

[27]

G. B. Warburton, Optimum absorbers parameters for various combinations of response and excitation, Earthquake Engineering and Structural Dynamics, 10(3) (1982), 381-401.  doi: 10.1002/eqe.4290100304.

[28]

C. Yang, Benchmark problem for response control of wind-excited tall buildings, Journal of Engineering Mechanics, 130 (2004), 437-446.  doi: 10.1061/(asce)0733-9399(2004)130:4(437).

[29]

C. Zang, A review of robust optimal design and its application in dynamics, Computers and Structures, 83 (2005), 315-326.  doi: 10.1016/j.compstruc.2004.10.007.

Figure 1.  Total wind velocity for the Z = 160m
Figure 2.  Convergence by the number of samples. (a) Convergence of the mean of $ u_{max} $, (b) Convergence of the standard derivation of $ u_{max} $
Figure 3.  Probability density function of maximum displacement
Figure 4.  Maximum displacement per building height
Figure 5.  Displacement at the top of the building for the cases: without TMD (yellow curve), with 1 TMD designed by Den Hartog's method (blue curve), with 1 TMD designed by Warburton's method (red curve), and with 1 TMD optimized by the proposed optimization method (green curve), for coefficients of variation equal zero for all random variables
Table 1.  Input random variables of the building and of the TMDs
Random Variable Mean Value CV
Story mass $m_{i}$ 9.8$\times$105kg 5$\%$
Story stiffness $k_{1}$ 2.13$\times$109N/m 10$\%$
Story stiffness $k_{40}$ 9.98$\times$108N/m 10$\%$
Damping ratio $\zeta$ 0.016 10$\%$
Spring constant of each TMD $k_{tmd}$ Design variable 5$\%$
Damping constant of each TMD $c_{tmd}$ Design variable 5$\%$
Random Variable Mean Value CV
Story mass $m_{i}$ 9.8$\times$105kg 5$\%$
Story stiffness $k_{1}$ 2.13$\times$109N/m 10$\%$
Story stiffness $k_{40}$ 9.98$\times$108N/m 10$\%$
Damping ratio $\zeta$ 0.016 10$\%$
Spring constant of each TMD $k_{tmd}$ Design variable 5$\%$
Damping constant of each TMD $c_{tmd}$ Design variable 5$\%$
Table 2.  Input random variable of the wind excitation
$\textbf{Random Variable}$ $\textbf{Mean Value}$ $\textbf{CV}$
Mean wind velocity $V_{0}$ 43 m/s 15%
$\textbf{Random Variable}$ $\textbf{Mean Value}$ $\textbf{CV}$
Mean wind velocity $V_{0}$ 43 m/s 15%
Table 3.  Resulting TMD robust design (scenario with 1 TMD on the top)
$\textbf{Run}$ $N_{TMDs} $ $ E(k_{tmd} $)[kN/m] $ E(c_{tmd} $)[kNs/m] $ E(u_{max} $)[m]
- Without dampers 0.628
1 1 1907.808 269.153 0.411
2 1 1964.466 250.027 0.416
3 1 1916.927 281.217 0.414
$\textbf{Run}$ $N_{TMDs} $ $ E(k_{tmd} $)[kN/m] $ E(c_{tmd} $)[kNs/m] $ E(u_{max} $)[m]
- Without dampers 0.628
1 1 1907.808 269.153 0.411
2 1 1964.466 250.027 0.416
3 1 1916.927 281.217 0.414
Table 4.  Resulting TMD robust design
$\textbf{Parameter}$ $\textbf{Without TMD}$ With TMD $\textbf{Reduction}$
$E(u_{max})[m]$ 0.6283 0.411 34.6%
$Var(u_{max})[m^2]$ 0.0458 0.0180 60.7%
$Std(u_{max})[m]$ 0.214 0.1344 37.2%
$E(a_{max})[m/s^2]$ 1.417 0.8669 38.8%
$\textbf{Parameter}$ $\textbf{Without TMD}$ With TMD $\textbf{Reduction}$
$E(u_{max})[m]$ 0.6283 0.411 34.6%
$Var(u_{max})[m^2]$ 0.0458 0.0180 60.7%
$Std(u_{max})[m]$ 0.214 0.1344 37.2%
$E(a_{max})[m/s^2]$ 1.417 0.8669 38.8%
Table 5.  Resulting TMD robust design (scenario with 5 TMDs on the top)
$\textbf{TMD Number}$ $\textbf{1}$ $\textbf{2}$ $\textbf{3}$ $\textbf{4}$ $\textbf{5}$
$ E(k_{tmd})[kN/m] $ 515.37 315.48 386.02 429.65 372.79
$ E(c_{tmd})[kN/m] $ 27.953 16.103 35.951 26.562 30.231
$ E(u_{max})[m] $ 0.415
$\textbf{TMD Number}$ $\textbf{1}$ $\textbf{2}$ $\textbf{3}$ $\textbf{4}$ $\textbf{5}$
$ E(k_{tmd})[kN/m] $ 515.37 315.48 386.02 429.65 372.79
$ E(c_{tmd})[kN/m] $ 27.953 16.103 35.951 26.562 30.231
$ E(u_{max})[m] $ 0.415
Table 6.  Comparing the robust optimization with a deterministic optimization
$\textbf{Parameter}$ $\textbf{Robust Optimization}$ $\textbf{Deterministic Optimization}$
Number of TMDs 1 1
$ k_{tmd}[kN/m] $ 1907.78 1727.77
$ c_{tmd}[kN/m] $ 269.11 147.47
$ E(u_{max})[m] $ 0.411 0.435
$ Var(u_{max})[m^2] $ 0.018 0.0224
$\textbf{Parameter}$ $\textbf{Robust Optimization}$ $\textbf{Deterministic Optimization}$
Number of TMDs 1 1
$ k_{tmd}[kN/m] $ 1907.78 1727.77
$ c_{tmd}[kN/m] $ 269.11 147.47
$ E(u_{max})[m] $ 0.411 0.435
$ Var(u_{max})[m^2] $ 0.018 0.0224
Table 7.  Comparing the robust optimization with SGA and GA
$\textbf{Parameter}$ Robust Optimization with SGA Robust Optimization with GA
Number of TMDs 1 1
$k_{tmd}[kN/m]$ 1907.78 2057.38
$c_{tmd}[kN/m]$ 269.11 761.65
$E(u_{max})[m]$ 0.411 0.449
$\textbf{Parameter}$ Robust Optimization with SGA Robust Optimization with GA
Number of TMDs 1 1
$k_{tmd}[kN/m]$ 1907.78 2057.38
$c_{tmd}[kN/m]$ 269.11 761.65
$E(u_{max})[m]$ 0.411 0.449
[1]

Jianjun Liu, Min Zeng, Yifan Ge, Changzhi Wu, Xiangyu Wang. Improved Cuckoo Search algorithm for numerical function optimization. Journal of Industrial and Management Optimization, 2020, 16 (1) : 103-115. doi: 10.3934/jimo.2018142

[2]

Behrouz Kheirfam, Morteza Moslemi. On the extension of an arc-search interior-point algorithm for semidefinite optimization. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 261-275. doi: 10.3934/naco.2018015

[3]

Mohamed A. Tawhid, Ahmed F. Ali. An effective hybrid firefly algorithm with the cuckoo search for engineering optimization problems. Mathematical Foundations of Computing, 2018, 1 (4) : 349-368. doi: 10.3934/mfc.2018017

[4]

Alireza Goli, Hasan Khademi Zare, Reza Tavakkoli-Moghaddam, Ahmad Sadeghieh. Application of robust optimization for a product portfolio problem using an invasive weed optimization algorithm. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 187-209. doi: 10.3934/naco.2019014

[5]

Sen Zhang, Guo Zhou, Yongquan Zhou, Qifang Luo. Quantum-inspired satin bowerbird algorithm with Bloch spherical search for constrained structural optimization. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3509-3523. doi: 10.3934/jimo.2020130

[6]

Xianbang Chen, Yang Liu, Bin Li. Adjustable robust optimization in enabling optimal day-ahead economic dispatch of CCHP-MG considering uncertainties of wind-solar power and electric vehicle. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1639-1661. doi: 10.3934/jimo.2020038

[7]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[8]

Mohammed Al-Azba, Zhaohui Cen, Yves Remond, Said Ahzi. Air-Conditioner Group Power Control Optimization for PV integrated Micro-grid Peak-shaving. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3165-3181. doi: 10.3934/jimo.2020112

[9]

Fengming Lin, Xiaolei Fang, Zheming Gao. Distributionally Robust Optimization: A review on theory and applications. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 159-212. doi: 10.3934/naco.2021057

[10]

Tao Zhang, Yue-Jie Zhang, Qipeng P. Zheng, P. M. Pardalos. A hybrid particle swarm optimization and tabu search algorithm for order planning problems of steel factories based on the Make-To-Stock and Make-To-Order management architecture. Journal of Industrial and Management Optimization, 2011, 7 (1) : 31-51. doi: 10.3934/jimo.2011.7.31

[11]

Cristian Barbarosie, Anca-Maria Toader, Sérgio Lopes. A gradient-type algorithm for constrained optimization with application to microstructure optimization. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1729-1755. doi: 10.3934/dcdsb.2019249

[12]

Ning Lu, Ying Liu. Application of support vector machine model in wind power prediction based on particle swarm optimization. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1267-1276. doi: 10.3934/dcdss.2015.8.1267

[13]

Ruxandra Stavre. Optimization of the blood pressure with the control in coefficients. Evolution Equations and Control Theory, 2020, 9 (1) : 131-151. doi: 10.3934/eect.2020019

[14]

Dan Tiba. Implicit parametrizations and applications in optimization and control. Mathematical Control and Related Fields, 2020, 10 (3) : 455-470. doi: 10.3934/mcrf.2020006

[15]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[16]

Xiangyu Gao, Yong Sun. A new heuristic algorithm for laser antimissile strategy optimization. Journal of Industrial and Management Optimization, 2012, 8 (2) : 457-468. doi: 10.3934/jimo.2012.8.457

[17]

Adil Bagirov, Sona Taheri, Soodabeh Asadi. A difference of convex optimization algorithm for piecewise linear regression. Journal of Industrial and Management Optimization, 2019, 15 (2) : 909-932. doi: 10.3934/jimo.2018077

[18]

Yong Wang, Wanquan Liu, Guanglu Zhou. An efficient algorithm for non-convex sparse optimization. Journal of Industrial and Management Optimization, 2019, 15 (4) : 2009-2021. doi: 10.3934/jimo.2018134

[19]

Brandon Seward. Every action of a nonamenable group is the factor of a small action. Journal of Modern Dynamics, 2014, 8 (2) : 251-270. doi: 10.3934/jmd.2014.8.251

[20]

Jutamas Kerdkaew, Rabian Wangkeeree. Characterizing robust weak sharp solution sets of convex optimization problems with uncertainty. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2651-2673. doi: 10.3934/jimo.2019074

 Impact Factor: 

Metrics

  • PDF downloads (312)
  • HTML views (225)
  • Cited by (0)

[Back to Top]