[1]
|
E. Allevi, A. Gnudi and I. V. Konnov, The proximal point method for nonmonotone variational inequalities, Mathematical Methods of Operations Research, 63 (2006), 553-565.
doi: 10.1007/s00186-005-0052-2.
|
[2]
|
J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984.
|
[3]
|
J. P. Aubin and H. Frankowska, Set-Valued Analysis, Volume 2 of Systems and Control: Foundations and Applications, Birkhäuser Boston Inc., Boston, MA, 1990.
|
[4]
|
A. Auslender and M. Teboulle, Lagrangian duality and related multiplier methods for variational inequality problems, SIAM Journal on Optimization, 10 (2000), 1097-1115.
doi: 10.1137/S1052623499352656.
|
[5]
|
T. Q. Bao and P. Q. Khanh, A projection-type algorithm for pseudomonotone nonlipschitzian multivalued variational inequalities, Generalized Convexity, Generalized Monotonicity and Applications, Vol. 77 of Nonconvex Optimization and Its Applications, Springer, New York, NY, USA, (2005), 113–129.
doi: 10.1007/0-387-23639-2_6.
|
[6]
|
L. C. Ceng, G. Mastroeni and J. C. Yao, An inexact proximal-type method for the generalized variational inequality in Banach spaces, Journal of Inequalities and Applications, (2007), Article ID 78124, 14 pages.
doi: 10.1155/2007/78124.
|
[7]
|
S. C. Fang and E. L. Peterson, Generalized variational inequalities, Journal of Optimization Theory and Applications, 38 (1982), 363-383.
doi: 10.1007/BF00935344.
|
[8]
|
C. J. Fang and Y. He, A double projection algorithm for multi-valued variational inequalities and a unified framework of the method, Applied Mathematics and Computation, 217 (2011), 9543-9551.
doi: 10.1016/j.amc.2011.04.009.
|
[9]
|
M. Fukushima, The primal Douglas-Rachford splitting algorithm for a class of monotone mappings with application to the traffic equilibrium problem, Mathematical Programming, 72 (1996), 1-15.
doi: 10.1016/0025-5610(95)00012-7.
|
[10]
|
H. Grar and D. Benterki, New effective projection method for variational inequalities problem, RAIRO Operations Research, 49 (2015), 805-820.
doi: 10.1051/ro/2015006.
|
[11]
|
Y. He, A new double projection algorithm for variational inequalities, Journal of Computational and Applied Mathematics, 185 (2006), 166-173.
doi: 10.1016/j.cam.2005.01.031.
|
[12]
|
A. N. Iusem and B. F. Svaiter, A variant of Korpolevich's method for variational inequalities with a new search strategy, Optimization, 42 (1997), 309-321.
doi: 10.1080/02331939708844365.
|
[13]
|
A. N. Iusem and L. R. L. Perez, An extragradient-type algorithm for non-smooth variational inequalities, Optimization, 48 (2000), 309-332.
doi: 10.1080/02331930008844508.
|
[14]
|
A. N. Iusem, An iterative algorithm for variational inequalities problem, Computational and Applied Mathematics, 13 (1994), 103-114.
|
[15]
|
I. V. Konnov, On the rate of convergence of combined relaxation methods, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 12 (1993), 89-92.
|
[16]
|
I. V. Konnov, Combined Relaxation Methods for Variational Inequalities, Lecture Notes in Economics and Mathematical Systems, Springer, Berlin, Germany, 495 (2001).
doi: 10.1007/978-3-642-56886-2.
|
[17]
|
I. V. Konnov, Combined relaxation methods for generalized monotone variational inequalities, in: eneralized convexity and related topics, Lecture Notes in Economics and Mathematical Systems, Springer, Berlin, Germany, 583 (2007), 3–31.
doi: 10.1007/978-3-540-37007-9_1.
|
[18]
|
G. M. Korpolevich, The extragradient method for finding saddle points and other problems, Matecon, 12 (1976), 747-756.
|
[19]
|
F. Li and Y. He, An algorithm for generalized variational inequality with pseudomonotone mapping, Journal of Computational and Applied Mathematics, 228 (2009), 212-218.
doi: 10.1016/j.cam.2008.09.014.
|
[20]
|
J. P. Penot and P. H. Quang, Generalized convexity of functions and generalized monotonicity of set-valued maps, J. Optimiz. Theory App., 92 (1997), 343-356.
doi: 10.1023/A:1022659230603.
|
[21]
|
B. T. Polyak, Introduction to Optimization, Optimization Sofware Incorporation, Publications Division, New York, USA, 1987.
|
[22]
|
R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Journal on Control and Optimization, 14 (1976), 877-898.
doi: 10.1137/0314056.
|
[23]
|
M. V. Solodov and B. F. Svaiter, A new projection method for variational inequality problems, SIAM Journal on Control and Optimization, 37 (1999), 765-776.
doi: 10.1137/S0363012997317475.
|
[24]
|
Y. J. Wang, N. Xiu and C. Y. Wang, Unified framework of extragradient-type method for pseudomonotone variational inequalities, Journal of Optimization Theory and Applications, 111 (2001), 641-656.
doi: 10.1023/A:1012606212823.
|
[25]
|
M. Ye, An improved projection method for solving generalized variational inequality problems, Optimization, 67 (2018), 1523-1533.
doi: 10.1080/02331934.2018.1478971.
|