[1]
|
A. Amirteimoori, An extended transportation problem: a DEA based approach, Central European Journal of Operations Research, 19 (2011), 513-521.
doi: 10.1007/s10100-010-0140-0.
|
[2]
|
A. Amirteimoori, An extended shortest path problem: A data envelopment anlysis approach, Applied Mathmatics Letters, 25 (2012), 1839-1843.
doi: 10.1016/j.aml.2012.02.042.
|
[3]
|
M. S. Bazaraa, J. J. Jarvis and H. D. Sherali, Linear Programming and Network Flows, Willey, New York, 2011.
|
[4]
|
C. M. Chao, M. M. Yu and M. C. Chen, Measuring the performance of financial holding companies, The Service Industries Journal, 30 (2010), 811-829.
doi: 10.1080/02642060701849857.
|
[5]
|
A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, European Journal of Operational Research, 2 (1978), 429-444.
doi: 10.1016/0377-2217(78)90138-8.
|
[6]
|
L. H. Chen and H. W. Lu, Responses and comments to "A comment on "An extended assignment problem considering multiple inputs and outputs"", Appl. Math. Model., 32 (2008), 2463-2466.
doi: 10.1016/j.apm.2007.09.029.
|
[7]
|
G. Dantzig, Linear Programming and Extensions, Princeton University Press, 1963.
|
[8]
|
K. Djordjevi'c, Evaluation of energy-environment effciency of European transport sectors: Non-radial DEA and TOPSIS approach, Energies, 12 (2019), 1-27.
|
[9]
|
F. Hitchcock, The distribution of a product from several sources to numerous localities, J. Math. Phys., 20 (1941), 224-230.
doi: 10.1002/sapm1941201224.
|
[10]
|
L. Kantorovich, Mathematical methods of organizingand planning production, Manag. Sci., 6 (1960), 336-422.
doi: 10.1287/mnsc.6.4.366.
|
[11]
|
G. Maity, D. Mardanya, S. K. Roy and G. W. Weber, A new approach for solving dual-hesitant fuzzy transportation problem with restrictions, Indian Academy of Sciences, 75 (2018), 44-75.
doi: 10.1007/s12046-018-1045-1.
|
[12]
|
G. Maity, S. K. Roy and J. L. Verdegay, Analyzing multimodal transportation problem and its application, Neural Computing and Applications, 32 (2020), 2243-2256.
doi: 10.1007/s00521-019-04393-5.
|
[13]
|
F. Meng, B. Su, E. Thomson, D. Zhou and P. Zhou, Measuring China's regional energy and carbon emission effciency with DEA models: A survey, Appl. Energy, 183 (2016), 1-21.
doi: 10.1016/j.apenergy.2016.08.158.
|
[14]
|
S. Midya, S. K. Roy and Vincent F. Yu, Intuitionistic fuzzy multi-stage multi-objective fixed-charge solid transportation problem in a green supply chain, International Journal of Machine Learning and Cybernetics, 12 (2021), 699-717.
doi: 10.1007/s13042-020-01197-1.
|
[15]
|
P. Pandian and G. Natrajan, An optimal more-for-less solution to fuzzy transportation problems with mixed constraints, Applied Mathematical Sciences, 4 (2010), 1405-1415.
|
[16]
|
J. C. Paradi, S. Rouatt and H. Zhu, Two-stage evaluation of bank branch efficiency using data envelopment analysis, Omega, 39 (2011), 99-109.
doi: 10.1016/j.omega.2010.04.002.
|
[17]
|
M. A. Saati, Generalized dealing problems with fuzzy differential costs with the help of DEA, ACECR Journals, 18 (2008), 1-10.
|
[18]
|
J. Sadeghi, M. Ghiyasi and A. Dehnokhalaji, Resource allcoaction and target setting based on virtual profit improvement, Numerical Algebra, Control and Optimization, 10 (2020), 127-142.
doi: 10.3934/naco.2019043.
|
[19]
|
A. Sudhakar, V. J. N. Arunsankar and T. Karpagam, A new approach for finding an optimal solution for transportation problems, European Journal of Scientific Research, (2020), 254-257.
|
[20]
|
Z. M. Tao and J. P. Xu, A class of rough multiple objective programming and its application to solid transportation problem, Inf. Sci., 188 (2012), 215-235.
doi: 10.1016/j.ins.2011.11.022.
|
[21]
|
K. Tone, A slacks-based measure of efficiency in data envelopment analysis, European Journal of Operational Research, 130 (2002), 498-509.
doi: 10.1016/S0377-2217(99)00407-5.
|
[22]
|
L. M. Zarafat Angiz, M. S. Saati and M. Mokhtaran, An alternative approach to assignment problem with non-homogeneous costs using common set of weights in DEA, Far East J. Appl. Math., 10 (2003), 29-39.
|