We study mean-field doubly reflected BSDEs. First, using the fixed point method, we show existence and uniqueness of the solution when the data which define the BSDE are $ p $-integrable with $ p = 1 $ or $ p>1 $. The two cases are treated separately. Next by penalization we show also the existence of the solution. The two methods do not cover the same set of assumptions.
Citation: |
[1] |
K. Bahlali, S. Hamadene and B. Mezerdi, Backward stochastic differential equations with two reflecting barriers and continuous with quadratic growth coefficient, Stochastic Processes and Their Applications, 115 (2005), 1107-1129.
doi: 10.1016/j.spa.2005.02.005.![]() ![]() ![]() |
[2] |
P. Briand, R. Elie and Y. Hu, BSDEs with mean reflection, The Annals of Applied Probability, 28 (2018), 482-510.
doi: 10.1214/17-AAP1310.![]() ![]() ![]() |
[3] |
R. Buckdahn, B. Djehiche, J. Li and S. Peng, Mean-field backward stochastic differential equations: a limit approach, The Annals of Probability, 37 (2009), 1524-1565.
doi: 10.1214/08-AOP442.![]() ![]() ![]() |
[4] |
R. Buckdahn, J. Li and S. Peng, Mean-field backward stochastic differential equations and related partial differential equations, Stochastic Processes and Their Applications, 119 (2009), 3133-3154.
doi: 10.1016/j.spa.2009.05.002.![]() ![]() ![]() |
[5] |
R. Buckdahn, J. Li, S. Peng and C. Rainer, Mean-field stochastic differential equations and associated PDEs, The Annals of Probability, 45 (2017), 824-878.
doi: 10.1214/15-AOP1076.![]() ![]() ![]() |
[6] |
R. Carmona and F. Delarue, Mean field forward-backward stochastic differential equations, Electronic Communications in Probability, 18 (2013).
doi: 10.1214/ECP.v18-2446.![]() ![]() ![]() |
[7] |
J. Cvitanic and I. Karatzas, Backward stochastic differential equations with reflection and Dynkin games, The Annals of Probability, (1996), 2024–2056.
doi: 10.1214/aop/1041903216.![]() ![]() ![]() |
[8] |
C. Dellacherie and P. A. Meyer, Probabilities et potentiel. Chapitres V VIII, revised ed. Actualits Scientifiques et Industrielles [Current Scientific and Industrial Topics], (1980). 1385.
![]() ![]() |
[9] |
B. Djehiche and R. Dumitrescu, Zero-sum mean-field Dynkin games: characterization and convergence, arXiv: 2202.02126, 2022.
![]() |
[10] |
B. Djehiche, R. Dumitrescu and J. Zeng, A propagation of chaos result for a class of mean-field reflected BSDEs with jumps, arXiv: 2111.14315, 2021.
![]() |
[11] |
B. Djehiche and R. Elie and S. Hamadéne, Mean-field reflected backward stochastic differential equations, arXiv: 1911.06079, To appear in Annals of Applied Probability, 2019.
![]() |
[12] |
B. El Asri, S. Hamadne and H. Wang, $L^p$-solutions for doubly reflected backward stochastic differential equations, Stochastic Analysis and Applications, 29 (2011), 907-932.
doi: 10.1080/07362994.2011.564442.![]() ![]() ![]() |
[13] |
N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M.-C. Quenez, Reflected solutions of backward SDE's, and related obstacle problems for PDE's, The Annals of Probability, 25 (1997), 702-737.
doi: 10.1214/aop/1024404416.![]() ![]() ![]() |
[14] |
S. Hamadéne and J. P. Lepeltier, Reflected BSDEs and mixed game problem, Stochastic Processes and Their Applications, 85 (2000), 177-188.
doi: 10.1016/S0304-4149(99)00072-1.![]() ![]() ![]() |
[15] |
I. Hassairi, Existence and uniqueness for $\mathbb {D} $-solutions of reflected BSDEs with two barriers without Mokobodzki's condition, Communications on Pure & Applied Analysis, 15 (2016), 1139.
doi: 10.3934/cpaa.2016.15.1139.![]() ![]() ![]() |
[16] |
Y. Hu, R. Moreau and F. Wang, Mean-Field Reflected BSDEs: the general Lipschitz case, arXiv: 2201.10359, 2022.
![]() |
[17] |
A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis, Courier Corporation, 1975.
![]() ![]() |
[18] |
J. M. Lasry and P. L. Lions, Mean field games, Japanese Journal of Mathematics, 2 (2007), 229-260.
doi: 10.1007/s11537-007-0657-8.![]() ![]() ![]() |
[19] |
J. P. Lepeltier and M. A. Maingueneau, Le jeu de Dynkin en thorie gnrale sans l'hypothse de Mokobodski, Stochastics: An International Journal of Probability and Stochastic Processes, 13 (1984), 25-44.
doi: 10.1080/17442508408833309.![]() ![]() ![]() |
[20] |
J. P. Lepeltier and J. San Martin, Backward SDEs with two barriers and continuous coefficient: an existence result, Journal of Applied Probability, 41 (2004), 162-175.
doi: 10.1239/jap/1077134675.![]() ![]() ![]() |
[21] |
J. P. Lepeltier and M. Xu, Penalization method for reflected backward stochastic differential equations with one rcll barrier, Statistics & Probability Letters, 75 (2005), 58-66.
doi: 10.1016/j.spl.2005.05.016.![]() ![]() ![]() |
[22] |
J. Li, H. Liang and X. Zhang, General mean-field BSDEs with continuous coefficients, Journal of Mathematical Analysis and Applications, 466 (2018), 264-280.
doi: 10.1016/j.jmaa.2018.05.074.![]() ![]() ![]() |
[23] |
J. Li, Reflected mean-field backward stochastic differential equations. Approximation and associated nonlinear PDEs, Journal of Mathematical Analysis and Applications, 413 (2014), 47-68.
doi: 10.1016/j.jmaa.2013.11.028.![]() ![]() ![]() |
[24] |
E. Miller and H. Pham, Linear-quadratic McKean-Vlasov stochastic differential games, In Modeling, Stochastic Control, Optimization, and Applications, (2019), 451–481.
![]() ![]() |
[25] |
H. Pham, Linear quadratic optimal control of conditional McKean-Vlasov equation with random coefficients and applications, Probability, Uncertainty and Quantitative Risk, 1 (2016), 7.
doi: 10.1186/s41546-016-0008-x.![]() ![]() ![]() |
[26] |
D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer Science & Business Media, 293 (2013).
doi: 10.1007/978-3-642-31898-6.![]() ![]() ![]() |
[27] |
M. Topolewski, Reflected BSDEs with general filtration and two completely separated barriers, Probab. Math. Statist., 39 (2019), 199-218.
doi: 10.19195/0208-4147.39.1.13.![]() ![]() ![]() |
[28] |
A. Uppman, Un theoreme de Helly pour les surmartingales fortes, In Sminaire de Probabilits XVI, Springer, Berlin, Heidelberg, (1980/81), 285–297.
![]() ![]() |