The object of this work is to construct an explicit linear operators $ A $ and $ B $ which generate a nilpotent Lie algebra for the bracket $ \left[A,B\right] = AB-BA $ of degree 2 in infinite dimensional spaces. This construction can be applied to give an exact optimal solution for a class of infinite dimensional bilinear systems.
Citation: |
[1] | A. Aib and N. Bensalem, Optimal control problem governed by an infinite dimensional one-nilpotent bilinear systems, Bull. Math. Soc. Sci. Math. Roumanie, 55 (2012), 107-128. |
[2] | M. S. Aronna, J. F. Bonnans and A. Kröner, Optimal control of infinite dimensional bilinear systems: Application to the heat and wave equations, Mathematical Programming, 168 (2018), 717-757. doi: 10.1007/s10107-016-1093-4. |
[3] | A. Berrabah, N. Bensalem and F. Pelletier, Optimality problem for infinite dimensional bilinear systems, Bulletin des Sciences Mathématiques, 130 (2006), 442-466. doi: 10.1016/j.bulsci.2006.03.006. |
[4] | S. P. Banks and K. Dinesh, Approximate optimal control and stability of nonlinear finite- and infinite-dimensional systems, Annals of Operations Research, 98 (2000), 19-44. doi: 10.1023/A:1019279617898. |
[5] | M. Bergounioux, Optimisation et Contrôle des Systèmes Linéaires, Dunod, 2001. |
[6] | C. Brian Hall, Lie Groups, Lie Algebras, and Representations, Springer, 2015. doi: 10.1007/978-3-319-13467-3. |
[7] | N. Bourbaki, Lie Groups and Lie Algebras, Springer, 1989. |
[8] | S. P. Banks and M. K. Yew, On a class of suboptimal controls for infinite-dimensionnal bilinear systems, Systems and Control Letters, 5 (1985), 327-333. doi: 10.1016/0167-6911(85)90030-1. |
[9] | S. P. Banks and M. K. Yew, On the optimal control of bilinear systems and its relation to Lie algebras, Int. J. Control, 43 (1986), 891-900. doi: 10.1080/00207178608933510. |
[10] | R. F. Curtain and A. J. pritchard, Infinite Dimensional Linear Systems Theory, Springer-Verlag, New York, 1978. |
[11] | D. Dochain, Contribution to the Analysis and Control of Distributed Parameter Systems with Application to (Bio)Chimical Processes and Robotics, Thèse, Univ. Cath. Louvain, Belgium, 1994. |
[12] | N. EL Alami, Analyse et commande optimale des systèmes bilinéaires à paramètres distribués- Application aux procédés énergétiques, Thèse, Univ. de Perpignan, France, 1986. |
[13] | F. R. Gantmacher, Théorie des Matrices, Dunod, Paris, 1966. |
[14] | J. P. Gauthier, C. Z. Xu and A. Bounat, An observer for infinite dimensional skew-adjoint bilinear systems, J. Math. Systems Estim. Control, 5 (1995), 119-122. |
[15] | C. Z. Xu, P. Ligarius and J. P. Gauthier, An observer for infinite dimensional dissipative bilinear systems, Comput. Math. Appl., 29 (1995), 13-21. doi: 10.1016/0898-1221(95)00014-P. |
[16] | P. Ligarius, Observateurs de systèmes bilinéaires à paramètres répartis - Application à un échangeur thermique, Thesis, Univ. of Rouen, France, 1995. |
[17] | P. Ligarius, J. P. Gauthier and C. Z. Xu, A simple observer for distributed systems. Application on a heat exchanger, J. Math. Systems Estim. Control, 8 (1998), 1-23. |
[18] | R. R. Mohler, Bilinear Control Processes, Academic Press, New York, 1973. |
[19] | P. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1. |
[20] | L. S. Pontryagin, V. G. Bbltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, ED. Mir, tard. Francaise, 1974. |
[21] | M. Popescu and F. Pelletier, Contrôle optimal pour une classe de systèmes bilinéaires, Revue Roumaine des Sciences Techniques, Série de Mécanique Appliquée, 50 (2005), 77-86. |
[22] | S. G. Tzafestas, K. E. Anagnostou and T. G. Pimenides, Stabilizing optimal control of bilinear systems with a generalized cost, Optimal Control Applications and Methods, 5 (1984), 111-117. doi: 10.1002/oca.4660050204. |
[23] | S. Yahyaoui, L. Lafhim and M. Ouzahra, Problem of optimal control for bilinear systems with endpoint constraint, Optimization and Control, (2021), arXiv: 2107.12663. |