\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Static Markowitz mean-variance portfolio selection model with long-term bonds

  • *Corresponding author: Frederi Viens

    *Corresponding author: Frederi Viens

The first author is supported by [National Research Foundation, South Africa]

Abstract / Introduction Full Text(HTML) Figure(6) / Table(12) Related Papers Cited by
  • We propose a static Markowitz mean-variance portfolio selection model suitable for long-term zero-coupon bonds. The model uses a multi-factor term structure model of Vasicek (Ornstein-Uhlenbeck) type to compute the portfolio's expected return and its variance in the model. German Government zero-coupon bonds with short to very long time to maturity are considered; the data spans August 2002 to December 2020. The main investment assumption is the re-investment of cash flows of zero-coupon bonds with maturities less than the planning horizon at the current spot interest rate. Solutions for the zero-coupon holding vector and the tangency portfolio are obtained in closed form. Model parameters are estimated under an assumption of modeling ambiguity which takes the form of Knightian uncertainties at the level of the latent factors, allowing the use of a Kalman filter. Different investment strategies are examined on various risk portfolios. Results show that one- and two-factor Vasicek models produce attractive out-of-sample portfolio predictions in terms of the Sharpe ratio especially on long-term investments. It is also noted that a small number of risky bonds can adequately produce very attractive portfolio risk-return profiles.

    Mathematics Subject Classification: Primary: 91G10, 91G30; Secondary: 60G35, 60H10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Portfolio frontier of two risky zero-coupon bonds; 24-year and 30-year under two-factor Vasicek model invested over 25-year investment period

    Figure 2.  Vasicek: Expectation structure of r(T) over one-year investment horizon

    Figure 3.  Vasicek: Volatility structure of r(T) over one-year investment horizon

    Figure 4.  Vasicek: Zero coupon bond price over one year investment period

    Figure 5.  Portfolio frontier of two risky zero coupon bonds; 4-year and 10-year, under one-factor Vasicek model invested over one-year period

    Figure 6.  Portfolio frontier of five risky zero-coupon bonds; 4-year, 6-year, 7-year, 8-year and 10-year under two-factor Vasicek model invested over 5-year investment period

    Table 1.  Vasicek: parameter estimation based on one- two- and three-factor models with bond maturities: $ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 $

    Parameter One-factor two-factor Three-factor
    $ \mu $ 0.0255 0.0292 0.0243
    $ \xi_{1} $ 0.3245 0.2554 0.2966
    $ \xi_{2} $ 0.3017 0.3288
    $ \xi_{3} $ 0.2860
    $ c_{1} $ 0.0256 0.0208 0.0211
    $ c_{2} $ 0.0228 0.0232
    $ c_{3} $ 0.0191
    $ \lambda_{1} $ 0.1172 0.1151 0.1124
    $ \lambda_{2} $ 0.1073 0.0963
    $ \lambda_{3} $ 0.0954
    $ \rho_{1} $ 0.9396 0.9531
    $ \rho_{2} $ 0.8077
    $ \rho_{3} $ 0.8247
    $ L $ 1033.4 1048.8 1047.0
    $ \sigma_{\epsilon2} $ 0.00267 0.00019 0.00018
    $ \sigma_{\epsilon3} $ 0.00268 0.00021 0.00019
    $ \sigma_{\epsilon4} $ 0.00266 0.00021 0.00018
    $ \sigma_{\epsilon5} $ 0.00263 0.00021 0.00020
    $ \sigma_{\epsilon6} $ 0.00259 0.00020 0.00019
    $ \sigma_{\epsilon7} $ 0.00092 0.00020 0.00019
    $ \sigma_{\epsilon8} $ 0.00251 0.00020 0.00018
    $ \sigma_{\epsilon9} $ 0.00248 0.00021 0.00018
    $ \sigma_{\epsilon10} $ 0.00246 0.00021 0.00019
     | Show Table
    DownLoad: CSV

    Table 2.  Vasicek: Parameter estimation based on one-two-and three-factor models with bond maturities: $ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 $. Here the shorthand notation $ \sigma_{\epsilon i} $ represents the estimated standard deviation $ \sigma(\epsilon_{T_i}) $

    Parameter One-factor two-factor Three-factor
    $ \mu $ 0.0353 0.0405 0.0369
    $ \xi_{1} $ 0.3245 0.2551 0.2523
    $ \xi_{2} $ 0.3011 0.3297
    $ \xi_{3} $ 0.2846
    $ c_{1} $ 0.0226 0.0184 0.0165
    $ c_{2} $ 0.0200 0.0203
    $ c_{3} $ 0.0167
    $ \lambda_{1} $ 0.1172 0.1152 0.1125
    $ \lambda_{2} $ 0.1072 0.0999
    $ \lambda_{3} $ 0.0941
    $ \rho_{1} $ 0.9396 0.9515
    $ \rho_{2} $ 0.8050
    $ \rho_{3} $ 0.8209
    $ L $ 1042 1057 1052
    $ \sigma_{\epsilon21} $ 0.00236 0.00019 0.00018
    $ \sigma_{\epsilon22} $ 0.00236 0.00019 0.00019
    $ \sigma_{\epsilon23} $ 0.00236 0.00018 0.00018
    $ \sigma_{\epsilon24} $ 0.00236 0.00018 0.00020
    $ \sigma_{\epsilon25} $ 0.00235 0.00019 0.00019
    $ \sigma_{\epsilon26} $ 0.00237 0.00019 0.00019
    $ \sigma_{\epsilon27} $ 0.00237 0.00018 0.00018
    $ \sigma_{\epsilon28} $ 0.00238 0.00019 0.00018
    $ \sigma_{\epsilon29} $ 0.00237 0.00019 0.00019
    $ \sigma_{\epsilon30} $ 0.00238 0.00019 0.00018
     | Show Table
    DownLoad: CSV

    Table 3.  Vasicek: Spot prices of long-term maturity zero coupon bonds

    1-factor
    $ T_{i} $ 20 21 22 23 24 25 26 27 28 29 30
    $ P(0, T_{i}) $ 0.2454 0.2281 0.2120 0.1970 0.1831 0.1702 0.1582 0.1471 0.1367 0.1270 0.1181
    2-factor
    $ T_{i} $ 20 21 22 23 24 25 26 27 28 29 30
    $ P(0, T_{i}) $ 0.2106 0.1939 0.1785 0.1643 0.1512 0.1392 0.1281 0.1180 0.1086 0.100 0.0920
    3-factor
    $ T_{i} $ 20 21 22 23 24 25 26 27 28 29 30
    $ P(0, T_{i}) $ 0.2477 0.2297 0.2130 0.1975 0.1832 0.1698 0.1575 0.1460 0.1354 0.1255 0.1164
     | Show Table
    DownLoad: CSV

    Table 4.  Vasicek: Expected zero coupon bond prices and standard deviations over 25-year investment period

    1-factor
    $ T_{i} $ 20 21 22 23 24 25 26 27 28 29 30
    $ \mathbb{E}_{0} $[$ P(25, T_{i}) $] 1.3689 1.2749 1.1894 1.1136 1.0495 1.000 0.9566 0.9016 0.8441 0.7875 0.7334
    std[$ P(25, T_{i}) $] 0.0038 0.0033 0.0028 0.0025 0.0022 0.000 0.0018 0.0016 0.0014 0.0012 0.0011
    2-factor
    $ T_{i} $ 20 21 22 23 24 25 26 27 28 29 30
    $ \mathbb{E}_{0} $[$ P(25, T_{i}) $] 1.4032 1.3004 1.2085 1.1277 1.0585 1.000 0.9488 0.8910 0.8319 0.7735 0, 7170
    std[$ P(25, T_{i}) $] 0.0042 0.0030 0.0019 0.0010 0.0003 0.000 0.0002 0.0006 0.0009 0.0011 0.0011
    3-factor
    $ T_{i} $ 20 21 22 23 24 25 26 27 28 29 30
    $ \mathbb{E}_{0} $[$ P(25, T_{i}) $] 1.3587 1.2711 1.1918 1.1206 1.0573 1.000 0.9500 0.8972 0.8445 0.7926 0.7421
    std[$ P(1, T_{i}) $] 0.0114 0.0087 0.0063 0.0043 0.0028 0.000 0.0022 0.0028 0.0032 0.0034 0.0034
     | Show Table
    DownLoad: CSV

    Table 5.  Vasicek: Expected zero coupon bond holding period returns over 25-year investment horizon

    1-factor
    $ T_{i} $ 20 21 22 23 24 25 26 27 28 29 30
    ExpReturn(%) 457.8 458.9 461.0 465.3 473.2 487.5 504.7 512.9 517.5 520.0 521.0
    2-factor
    $ T_{i} $ 20 21 22 23 24 25 26 27 28 29 30
    ExpReturn(%) 566.3 570.7 577.0 586.4 600.0 618.4 640.7 655.1 666.0 673.5 679.3
    3-factor
    $ T_{i} $ 20 21 22 23 24 25 26 27 28 29 30
    ExpReturn(%) 448.5 453.4 459.5 467.4 477.1 488.9 503.2 514.5 523.7 531.6 537.5
     | Show Table
    DownLoad: CSV

    Table 6.  Expected returns, Expected terminal wealth, Sharpe Ratios, and risk, over $ 25 $-year investment period

    Risky bonds(yrs) Exp Returns (%) $ E[\hbar_{25}] $ Sharpe Ratio Risk (%)
    1-factor
    27 500.2 5.894 2.23 5.7
    24;30 497.1 5.882 1.68 5.7
    24;27;30 497.3 5.892 1.72 5.7
    20;21;22;23;24;26;27;28;29;30 489.2 5.868 0.26 6.5
    2-factor
    27 655.1 7.206 4.89 7.5
    24;30 639.7 7.198 3.80 6.0
    24;27;30 638.4 7.208 3.28 6.1
    20;21;22;23;24;26;27;28;29;30 621.5 7.172 0.46 6.7
    3-factor
    27 514.5 5.908 4.83 5.3
    24;30 507.3 5.907 3.23 5.7
    24;27;30 504.6 5.913 2.34 6.7
    20;21;22;23;24;26;27;28;29;30 491.6 5.880 0.40 6.8
     | Show Table
    DownLoad: CSV

    Table 7.  Vasicek: Expected zero coupon bond prices and standard deviations over one year investment period

    1-factor
    $ T_{i} $ 1 2 3 4 5 6 7 8 9 10
    $ \mathbb{E}_{0} $[$ P(1, T_{i}) $] 1 0.9694 0.9280 0.8840 0.8400 0.7971 0.7559 0.7165 0.6791 0.6436
    std[$ P(1, T_{i}) $] 0.0000 0.0755 0.0721 0.0686 0.0656 0.0616 0.0592 0.0556 0.0529 0.0500
    2-factor
    $ T_{i} $ 1 2 3 4 5 6 7 8 9 10
    $ \mathbb{E}_{0} $[$ P(1, T_{i}) $] 1 0.9563 0.9066 0.8555 0.8046 0.7550 0.7073 0.6619 0.6188 0.5783
    std[$ P(1, T_{i}) $] 0.0000 0.0693 0.0787 0.0848 0.0883 0.0894 0.0883 0.0860 0.0831 0.0800
    3-factor
    $ T_{i} $ 1 2 3 4 5 6 7 8 9 10
    $ \mathbb{E}_{0} $[$ P(1, T_{i}) $] 1 0.9626 0.9231 0.8838 0.8449 0.8068 0.7696 0.7336 0.6988 0.6653
    std[$ P(1, T_{i}) $] 0.0000 0.0748 0.0927 0.1063 0.1140 0.1183 0.1191 0.1140 0.1170 0.1127
     | Show Table
    DownLoad: CSV

    Table 8.  Vasicek: Expected zero coupon bond holding period returns over one - year investment horizon

    1-factor
    $ T_{i} $ 1 2 3 4 5 6 7 8 9 10
    ExpReturn(%) 3.1660 4.4612 4.9773 5.2381 5.3820 5.4505 5.4990 5.5072 5.5158 5.5428
    2-factor
    $ T_{i} $ 1 2 3 4 5 6 7 8 9 10
    ExpReturn(%) 4.5697 5.4820 5.9731 6.3261 6.5695 6.7440 6.8590 6.9651 7.0032 7.0728
    3-factor
    $ T_{i} $ 1 2 3 4 5 6 7 8 9 10
    ExpReturn(%) 3.8853 4.2791 4.4467 4.6041 4.7224 4.8337 4.9073 4.9800 5.0353 5.0861
     | Show Table
    DownLoad: CSV

    Table 9.  Expected returns, Expected terminal wealth and Sharpe Ratios of risky zero-coupon bond portfolios over one-year investment period

    Risky bonds(yrs) Exp Returns (%) $ E[\hbar_{1}] $ Sharpe Ratio Risk (%)
    1-factor
    7 5.4990 1.039 0.78 3.0
    4;10 5.3900 1.042 0.57 3.9
    4;7;10 5.3720 1.043 0.50 4.4
    3;7;8;10 5.3820 1.043 0.47 4.7
    4;6;7;8;10 5.4475 1.045 0.46 5.0
    2;3;...; 10 5.1885 1.047 0.47 6.2
    2-factor
    7 6.8590 1.054 0.37 6.2
    4;10 6.6990 1.055 0.39 5.5
    4;7;10 6.6851 1.057 0.34 6.3
    3;7;8;10 6.7270 1.057 0.32 6.7
    4;6;7;8;10 6.7934 1.059 0.30 7.3
    2;3;...; 10 6.4894 1.060 0.24 8.2
    3-factor
    7 4.9073 1.043 0.09 11.9
    4;10 4.8451 1.044 0.08 7.3
    4;7;10 4.8172 1.045 0.11 8.5
    3;7;8;10 4.8550 1.045 0.11 8.9
    4;6;7;8;10 4.8822 1.046 0.11 9.8
    2;3;...; 10 4.7184 1.046 0.09 10.7
     | Show Table
    DownLoad: CSV

    Table 10.  Vasicek: Expected zero-coupon bond prices and standard deviations over 5-year investment period

    1-factor
    $ T_{i} $ 1 2 3 4 5 6 7 8 9 10
    $ \mathbb{E}_{0} $[$ P(5, T_{i}) $] 1.1976 1.1380 1.0841 1.0378 1.000 0.9694 0.9280 0.8840 0.8400 0.7971
    std[$ P(5, T_{i}) $] 0.0066 0.0062 0.0059 0.0057 0.000 0.0053 0.0051 0.0049 0.0046 0.0044
    2-factor
    $ T_{i} $ 1 2 3 4 5 6 7 8 9 10
    $ \mathbb{E}_{0} $[$ P(5, T_{i}) $] 1.2500 1.1751 1.1083 1.0502 1.000 0.9563 0.9066 0.8555 0.8046 0.7550
    std[$ P(5, T_{i}) $] 0.0052 0.0041 0.0030 0.0017 0.000 0.0016 0.0025 0.0031 0.0033 0.0035
    3-factor
    $ T_{i} $ 1 2 3 4 5 6 7 8 9 10
    $ \mathbb{E}_{0} $[$ P(5, T_{i}) $] 1.1926 1.1390 1.0893 1.0435 1.000 0.9626 0.9231 0.8838 0.8449 0.8068
    std[$ P(5, T_{i}) $] 0.0089 0.0077 0.0064 0.0052 0.000 0.0048 0.0055 0.0060 0.0063 0.0065
     | Show Table
    DownLoad: CSV

    Table 11.  Vasicek: Expected zero coupon bond holding period returns over five - year investment horizon

    1-factor
    $ T_{i} $ 1 2 3 4 5 6 7 8 9 10
    ExpReturn(%) 23.5 22.6 22.6 23.5 25.5 28.2 29.5 30.2 30.5 30.7
    2-factor
    $ T_{i} $ 1 2 3 4 5 6 7 8 9 10
    ExpReturn(%) 30.7 29.6 29.5 30.5 32.4 35.2 37.0 38.3 39.1 40.0
    3-factor
    $ T_{i} $ 1 2 3 4 5 6 7 8 9 10
    ExpReturn(%) 23.8 23.4 23.3 23.5 23.9 25.1 25.8 26.5 27.0 27.9
     | Show Table
    DownLoad: CSV

    Table 12.  Expected returns, Expected terminal wealth and Sharpe Ratios over $ 5 $-year investment period

    Risky bonds(yrs) Exp Returns (%) $ E[\hbar_{5}] $ Sharpe Ratio Risk (%)
    1-factor
    7 29.5 1.271 0.58 6.9
    4;10 27.1 1.263 0.23 7.1
    4;7;10 27.6 1.268 0.30 7.0
    3;7;8;10 28.25 1.271 0.38 7.2
    4;6;7;8;10 28.42 1.273 0.41 7.1
    1;2;3;...; 10 26.54 1.261 0.14 75
    2-factor
    7 37.0 1.339 0.62 7.7
    4;10 35.25 1.337 0.51 5.6
    4;7;10 35.48 1.343 0.50 6.2
    3;7;8;10 36.20 1.345 0.56 6.6
    4;6;7;8;10 36.20 1.347 0.56 6.8
    1;2;3;...; 10 34.09 1.333 0.26 6.2
    3-factor
    7 25.8 1.246 0.26 7.4
    4;10 25.70 1.250 0.31 5.9
    4;7;10 25.48 1.251 0.22 7.1
    3;7;8;10 25.88 1.252 0.26 7.5
    4;6;7;8;10 25.76 1.252 0.24 7.9
    1;2;3;...; 10 24.89 1.247 0.16 6.2
     | Show Table
    DownLoad: CSV
  • [1] S. H. Babbs and K. B. Nowman, Kalman filtering of generalized vasicek term structure models, Journal of Financial and Quantitative Analysis, 34 (1999), 115-130. 
    [2] I. Bajeux-Besnainou and R. Portait, Dynamic asset allocation in a mean-variance framework, Journal of Management Science, 44 (1998), 79-95. 
    [3] W. BesslerH. Opfer and D. Wolff, Multi-asset portfolio optimization and out-of-sample performance: an evaluation of Black-Litterman, mean-variance, and naïve diversification approaches, The European Journal of Finance, 23 (2017), 1-30. 
    [4] T. BjorkA. Murgoci and X. Y. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion, Journal of Mathematical Finance, 24 (2014), 1-24.  doi: 10.1111/j.1467-9965.2011.00515.x.
    [5] T. Bjork, Arbitrage Theory in Continuous Time, 3$^{rd}$ edition, Cambridge U.P., 2009.
    [6] J. C. CoxJ. E. Ingersoll and S. A. Ross, A theory of the term structure of interest rates, Econometrica, 53 (1985), 385-407.  doi: 10.2307/1911242.
    [7] H. Chang, Dynamic mean-variance portfolio selection with liability and stochastic interest rate, Economic Modelling, 51 (2015), 172-182. 
    [8] V. DeMiguel and F. J. Nogales, Portfolio selection with robust estimation, Operations Research, 57 (2009), 560-577.  doi: 10.1287/opre.1080.0566.
    [9] V. DeMiguelL. Garlappi and R. Uppal, Optimal versus naive diversification: how inefficient is the 1/n portfolio strategy?, Review of Financial Studies, 22 (2009), 1915-1953. 
    [10] E. J. Elton, et al., Modern Portfolio Theory and Investment Analysis, Chichester, John Wiley & Sons, 2003.
    [11] F. J. Fabozzi, The Handbook of Fixed Income Securities, 6$^{th}$ edition, Chichester, John Wiley & Sons, 2000.
    [12] F. J. Fabozzi, Bond Portfolio Management, New Hope, Frank J. Fabozzi Associates, 2001.
    [13] C. F. Huang and R. H. Litzenberger, Foundations for Financial Economics, North-Holland, Amsterdam, 1988.
    [14] O. Korn and C. Koziol, Bond portfolio optimization: A risk-return approach, Journal of Fixed Income, 15 (2006), 48-60. 
    [15] R. Korn and H. Kraft, A stochastic control approach to portfolio problems with stochastic interest rates, SIAM Journal on Control and Optimization, 4 (2002), 1250-1269.  doi: 10.1137/S0363012900377791.
    [16] J. G. Kallberg and W. T. Ziemba, Comparison of alternative utility functions in portfolio selection, Management Science, 29 (1983), 1257-1276. 
    [17] H. M. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91.  doi: 10.1111/j.1540-6261.1952.tb01525.x.
    [18] M. Mastro, Financial Derivatives and Energy Market Valuation: Theory and Implementation in Matlab, Wiley & Sons, New Jersey, 2013. doi: 10.1002/9781118501788.
    [19] R. MawonikeD. Ikpe and S. A. Gyamerah, Modelling the dynamics of long-term bonds with Kalman filter, Int. J. Bonds and Derivatives, 4 (2021), 236-257. 
    [20] R. C. Merton, Theory of rational option pricing, Bell Journal of Economics and Management Science, 4 (1973), 141-183. 
    [21] R. O. Michaud, The Markowitz optimization enigma: Is optimized, optimal?, Financial Analysts Journal, 45 (1989), 31-42. 
    [22] M. Puhle, Bond Portfolio Optimization, Ph.D Thesis, University of Passau, Springer, Verlag Berlin Heidelberg, 2008.
    [23] P. A. Samuelson, Lifetime portfolio selection by dynamic stochastic programming, The Review of Economics and Statistics, 51 (1969), 239-246. 
    [24] W. F. Sharpe, The sharpe ratio, Journal of Portfolio Management, Fall (1994), 49-58.
    [25] L. Svensson, Estimating and interpreting forward interest rates, Centre for Economic Policy Research, 1051 (1994). 
    [26] S. Svoboda, Interest Rate Modelling, Basingstoke: Palgrave Macmillan, 2004.
    [27] O. Vasicek, An equilibrium characterization of term structure, Journal of Financial Economics, 5 (1977), 177-188. 
    [28] H. WuY. Zeng and H. Yao, Multi-period Markowitz's mean-variance portfolio selection with state-dependent exit probability, Journal of Economic Modelling, 36 (2014), 69-78. 
    [29] Y. ZhangX. Li and S. Guo, Portfolio selection problems with Markowitz's mean-variance framework: a review of literature, Fuzzy Optim. Decis. Making, 17 (2018), 125-158.  doi: 10.1007/s10700-017-9266-z.
  • 加载中

Figures(6)

Tables(12)

SHARE

Article Metrics

HTML views(3336) PDF downloads(477) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return