[1]
|
C. Alasseur, I. Ben Taher and A. Matoussi, An extended mean field game for storage in smart grids, Journal of Optimization Theory and Applications, 184 (2020), 644-670.
doi: 10.1007/s10957-019-01619-3.
|
[2]
|
A. Altarovici, O. Bokanowski and H. Zidani, A general hamilton-jacobi framework for non-linear state-constrained control problems, ESAIM: COCV, 19 (2013), 337-357.
doi: 10.1051/cocv/2012011.
|
[3]
|
S. S. Arjmand and G. Mazanti, Nonsmooth mean field games with state constraints, arXiv: 2110.15713
|
[4]
|
A. Balata, M. Ludkovski, A. Maheshwari and J. Palczewski, Statistical learning for probability-constrained stochastic optimal control, European Journal of Operational Research, 290 (2021), 640-656.
doi: 10.1016/j.ejor.2020.08.041.
|
[5]
|
O. Bokanowski, N. Gammoudi and H. Zidani, Optimistic planning algorithms for state-constrained optimal control problems, Computers and Mathematics with applications, 109 (2022), 158-179.
doi: 10.1016/j.camwa.2022.01.016.
|
[6]
|
O. Bokanowski, A. Picarelli and H. Zidani, Dynamic programming and error estimates for stochastic control problems with maximum cost, Appl. Math. Optim., 74 (2014), 125-163.
doi: 10.1007/s00245-014-9255-3.
|
[7]
|
O. Bokanowski, A. Picarelli and H. Zidani, State-constrained stochastic optimal control problems via reachability approach, SIAM Journal on Control and Optimization, 54 (2016), 2568-2593.
doi: 10.1137/15M1023737.
|
[8]
|
B. Bonnet, A pontryagin maximum principle in wasserstein spaces for constrained optimal control problems, ESAIM: COCV, 25 (2019), 52.
doi: 10.1051/cocv/2019044.
|
[9]
|
B. Bonnet and H. Frankowska, Necessary optimality conditions for optimal control problems in wasserstein spaces, Appl. Math. Optim., 84 (2021), 1281-1330.
doi: 10.1007/s00245-021-09772-w.
|
[10]
|
B. Bouchard, B. Djehiche and I. Kharroubi, Quenched mass transport of particles toward a target, Journal of Optimization Theory and Applications, 186 (2020), 345-374.
doi: 10.1007/s10957-020-01704-y.
|
[11]
|
B. Bouchard, R. Elie and C. Imbert, Optimal control under stochastic target constraints, SIAM Journal on Control and Optimization, 48 (2010), 3501-3531.
doi: 10.1137/090757629.
|
[12]
|
P. Cannarsa and R. Capuani, Existence and uniqueness for mean field games with state constraints, in PDE Models for Multi-Agent Phenomena (eds. C. Pierre, P. A. and S. F.), vol. 28 of Springer INdAM Series
|
[13]
|
P. Cannarsa, R. Capuani and P. Cardaliaguet, Mean field games with state constraints: from mild to pointwise solutions of the pde system, Calculus of Variations and Partial Differential Equations, 60 (2021), Article Number 108.
doi: 10.1007/s00526-021-01936-4.
|
[14]
|
R. Carmona and F. Delarue, Forward-backward stochastic differential equations and controlled McKean-Vlasov dynamics, The Annals of Probability, 43 (2015), 2647-2700.
doi: 10.1214/14-AOP946.
|
[15]
|
R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games: vol. I, Mean Field FBSDEs, Control, and Games, Springer, 2018.
doi: 10.1007/s00245-016-9396-7.
|
[16]
|
R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games: vol. II, Mean Field Game with Common Noise and Master Equations, Springer, 2018.
|
[17]
|
R. Carmona and M. Laurière, Convergence analysis of machine learning algorithms for the numerical solution of mean-field control and games: II the finite horizon case, arXiv: 1908.01613, to appear in The Annals of Applied Probability.
|
[18]
|
L. Chen and J. Wang, Maximum principle for delayed stochastic mean-field control problem with state constraint, Advances in Difference Equations, (2019), Article Number 348.
doi: 10.1186/s13662-019-2283-1.
|
[19]
|
Y.-L. Chow, X. Yu and C. Zhou, On dynamic programming principle for stochastic control under expectation constraints, Journal of Optimization Theory and Applications, 185 (2020), 803-818.
doi: 10.1007/s10957-020-01673-2.
|
[20]
|
A. Cosso, F. Gozzi, I. Kharroubi, H. Pham and M. Rosestolato, Optimal control of path-dependent mckean-vlasov sdes in infinite dimension, arXiv: 2012.14772, to appear in Annals of Applied Probability.
|
[21]
|
A. Cosso and H. Pham, Zero-sum stochastic differential games of generalized mckean-vlasov type, Journal de Mathématiques Pures et Appliquées, 129 (2019), 180-212.
doi: 10.1016/j.matpur.2018.12.005.
|
[22]
|
N. Curin, M. Kettler, X. Kleisinger-Yu, V. Komaric, T. Krabichler, J. Teichmann and H. Wutte, A deep learning model for gas storage optimization, arXiv: 2102.01980.
doi: 10.1007/s10203-021-00363-6.
|
[23]
|
S. Daudin, Optimal control of diffusion processes with terminal constraint in law, arXiv: 2012.10707.
doi: 10.1007/s10957-022-02053-8.
|
[24]
|
S. Daudin, Optimal control of the fokker-planck equation under state constraints in the wasserstein space, arXiv: 2109.14978.
|
[25]
|
M. F. Djete, D. Possama and X. Tan, Mckean-Vlasov optimal control: The dynamic programming principle, Annals of Probability, 50 (2022), 791-833.
doi: 10.1214/21-aop1548.
|
[26]
|
G. Fu and U. Horst, Mean-field leader-follower games with terminal state constraint, SIAM Journal on Control and Optimization, 58 (2020), 2078-2113.
doi: 10.1137/19M1241878.
|
[27]
|
A. Galichon, P. Henry-Labordère and N. Touzi, A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options, The Annals of Applied Probability, 24 (2014), 312-336.
doi: 10.1214/13-AAP925.
|
[28]
|
A. Geletu, M. Klppel, H. Zhang and P. Li, Advances and applications of chance-constrained approaches to systems optimisation under uncertainty, International Journal of Systems Science, 44 (2013), 1209-1232.
doi: 10.1080/00207721.2012.670310.
|
[29]
|
H. Gevret, N. Langrené, J. Lelong, R. Lobato, T. Ouillon, X. Warin and A. Maheshwari, Stochastic Optimization library in c++, 2018, URL https://hal.archives-ouvertes.fr/hal-01361291.
|
[30]
|
J. Graber and S. Mayorga, A note on mean field games of controls with state constraints: existence of mild solutions, arXiv: 2109.11655.
|
[31]
|
D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 3rd International Conference for Learning Representations, 2014.
|
[32]
|
M. Laurière and O. Pironneau, Dynamic programming for mean-field type control, Comptes Rendus Mathematique, 352 (2014), 707-713.
doi: 10.1016/j.crma.2014.07.008.
|
[33]
|
M. Germain, M. Laurière, H. Pham and X. Warin, DeepSets and derivative networks for solving symmetric PDEs, Journal of Scientific Computing, 91 (2022), Article Number 63.
doi: 10.1007/s10915-022-01796-w.
|
[34]
|
W. Lefebvre, G. Loeper and H. Pham, Mean-variance portfolio selection with tracking error penalization, Mathematics, 8 (2020).
|
[35]
|
S. M. Pesenti and S. Jaimungal, Portfolio optimisation within a wasserstein ball, Available at SSRN: https://ssrn.com/abstract=3744994.
|
[36]
|
L. Pfeiffer, X. Tan and Y.-L. Zhou, Duality and approximation of stochastic optimal control problems under expectation constraints, SIAM Journal on Control and Optimization, 59 (2021), 3231-3260.
doi: 10.1137/20M1349886.
|
[37]
|
H. Pham and X. Wei, Dynamic programming for optimal control of stochastic mckean-vlasov dynamics, SIAM Journal on Control and Optimization, 55 (2017), 1069-1101.
doi: 10.1137/16M1071390.
|
[38]
|
H. Pham and X. Wei, Bellman equation and viscosity solutions for mean-field stochastic control problem, ESAIM: COCV, 24 (2018), 437-461.
doi: 10.1051/cocv/2017019.
|
[39]
|
A. Picarelli and T. Vargiolu, Optimal management of pumped hydroelectric production with state constrained optimal control, Journal of Economic Dynamics and Control, 126 (2021), 103940.
doi: 10.1016/j.jedc.2020.103940.
|
[40]
|
T. Rockafellar, Convex Analysis Princeton University Press, 1970.
|
[41]
|
H. M. Soner and N. Touzi, Stochastic target problems, dynamic programming, and viscosity solutions, SIAM Journal on Control and Optimization, 41 (2002), 404-424.
doi: 10.1137/S0363012900378863.
|
[42]
|
X. Warin, Deep learning for efficient frontier calculation in finance, arXiv: 2101.02044.
|
[43]
|
X. Warin, Reservoir optimization and machine learning methods, arXiv: 2106.08097.
|