[1]
|
A. Berman and N. Shaked-Monderer, Completely Positive Matrices, World Scientific, 2003.
doi: 10.1142/9789812795212.
|
[2]
|
I. M. Bomze, Copositive optimization–Recent developments and applications, European J. Oper. Res., 216 (2012), 509-520.
doi: 10.1016/j.ejor.2011.04.026.
|
[3]
|
A. Cichocki, R. Zdunek, A. H. Phan and S. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multiway Data Analysis and Blind Source Separation, Wiley, New York, 2009.
|
[4]
|
P. Comon, G. Golub, L.-H. Lim and B. Mourrain, Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal. Appl., 30 (2008), 1254-1279.
doi: 10.1137/060661569.
|
[5]
|
E. De. Klerk and D. V. Pasechnik, Approximation of the stability number of a graph via copositive programming, SIAM J. Optim., 12 (2002), 875-892.
doi: 10.1137/S1052623401383248.
|
[6]
|
P. J. Dickinson and L. Gijben, On the computational complexity of membership problems for the completely positive cone and its dual, Comput. Optim. Appl., 57 (2014), 403-415.
doi: 10.1007/s10589-013-9594-z.
|
[7]
|
M. Dür, Copositive programming–A survey, in Recent Advances in Optimization and Its Applications in Engineering (eds. M. Diehl, F. Glineur, E. Jarlebring, and W. Michiels), Springer, Berlin, 2010, 3-20.
|
[8]
|
J. Fan, J. Nie and A. Zhou, Tensor eigenvalue complementarity problems, Mathematical Programming, 170 (2018), 507-539.
doi: 10.1007/s10107-017-1167-y.
|
[9]
|
J. Fan, J. Nie and A. Zhou, Completely positive binary tensors, Math. Oper. Res., 44 (2019), 1087-1100.
doi: 10.1287/moor.2018.0963.
|
[10]
|
J. Fan and A. Zhou, The CP-matrix approximation problem, SIAM J. Matrix Anal. Appl., 37 (2016), 171-194.
doi: 10.1137/15M1012086.
|
[11]
|
J. Fan and A. Zhou, A semidefinite algorithm for completely positive tensor decomposition, Comput. Optim. Appl., 66 (2017), 267-283.
doi: 10.1007/s10589-016-9870-9.
|
[12]
|
M. Hall and M. Newman, Copositive and completely positive quadratic forms, Proceedings of the Cambridge Philosophical Society, 59 (1963), 32933.
|
[13]
|
D. Henrion and J. Lasserre, Detecting global optimality and extracting solutions in GloptiPoly, Positive Polynomials in Control, Springer, Berlin, Heidelberg, (2005), 293-310.
doi: 10.1007/10997703_15.
|
[14]
|
D. Henrion, J. Lasserre and J. Löfberg, Gloptipoly 3: moments, optimization and semidefinite programming, Optim. Methods Softw., 24 (2009), 761-779.
doi: 10.1080/10556780802699201.
|
[15]
|
D. Henrion, M. Korda and J. Lasserre, The Moment-SOS Hierarchy, World Scientific, Singapore, 2020.
|
[16]
|
C. Hillar and J. Nie, An elementary and constructive solution to Hilbert's 17th problem for matrices, Proc. Amer. Math. Soc., 136 (2008), 73-76.
doi: 10.1090/S0002-9939-07-09068-5.
|
[17]
|
J. Landsberg, Tensors: Geometry and Applications, Graduate Studies in Mathematics, 128, AMS, Providence, RI, 2012.
doi: 10.1090/gsm/128.
|
[18]
|
J. Lasserre, Global optimization with polynomials and the problem of moments, SIAM J. Optim., 11 (2000), 796-817.
doi: 10.1137/S1052623400366802.
|
[19]
|
J. Lasserre, An Introduction to Polynomial and Semi-algebraic Optimization, Cambridge University Press, 2015.
doi: 10.1017/CBO9781107447226.
|
[20]
|
M. Laurent, Sums of squares, moment matrices and optimization over polynomials, Emerging Applications of Algebraic Geometry of IMA Volumes in Mathematics and its Applications, 149, pp. 157–270, Springer, 2009.
doi: 10.1007/978-0-387-09686-5_7.
|
[21]
|
L. H. Lim, Tensors and Hypermatrices, in Handbook of Linear Algebra (eds. L. Hogben), 2nd edition, CRC Press, Boca Raton, FL, 2013.
|
[22]
|
Z. Luo and L. Qi, Completely positive tensors: properties, easily checkable subclasses, and tractable relaxations, SIAM J. Matrix Anal. Appl., 37 (2016), 1675-1698.
doi: 10.1137/15M1025220.
|
[23]
|
O. Mason and R. Shorten, On linear copositive Lyapunov functions and the stability of switched positive linear systems, IEEE Trans. Automat. Control, 52 (2007), 1346-1349.
doi: 10.1109/TAC.2007.900857.
|
[24]
|
J. Nie, Polynomial matrix inequality and semidefinite representation, Math. Oper. Res., 36 (2011), 398-415.
doi: 10.1287/moor.1110.0498.
|
[25]
|
J. Nie, Certifying convergence of Lasserre's hierarchy via flat truncation, Math. Program., 142 (2013), 485-510.
doi: 10.1007/s10107-012-0589-9.
|
[26]
|
J. Nie, The $\mathcal{{A}}$-truncated $K$-moment problem, Found. Comput. Math., 14 (2014), 1243-1276.
doi: 10.1007/s10208-014-9225-9.
|
[27]
|
J. Nie, Optimality conditions and finite convergence of Lasserre's hierarchy, Math. Program., 146 (2014), 97-121.
doi: 10.1007/s10107-013-0680-x.
|
[28]
|
J. Nie, Linear optimization with cones of moments and nonnegative polynomials, Math. Program., 153 (2015), 247-274.
doi: 10.1007/s10107-014-0797-6.
|
[29]
|
J. Nie, Tight relaxations for polynomial optimization and Lagrange multiplier expressions, Math. Program., 178 (2019), 1-37.
doi: 10.1007/s10107-018-1276-2.
|
[30]
|
J. Nie and X. Zhang, Real eigenvalues of nonsymmetric tensors, Comput. Optim. Appl., 70 (2018), 1-32.
doi: 10.1007/s10589-017-9973-y.
|
[31]
|
J. Nie, Z. Yang and X. Zhang, A complete semidefinite algorithm for detecting copositive matrices and tensors, SIAM J. Optim., 28 (2018), 2902-2921.
doi: 10.1137/17M115308X.
|
[32]
|
M. Putinar, Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J., 42 (1993), 969-984.
doi: 10.1512/iumj.1993.42.42045.
|
[33]
|
L. Qi, Symmetric nonnegative tensors and copositive tensors, Linear Algebra Appl., 439 (2013), 228-238.
doi: 10.1016/j.laa.2013.03.015.
|
[34]
|
L. Qi, C. Xu and and Y. Xu, Nonnegative tensor factorization, completely positive tensors, and a hierarchical elimination algorithm, SIAM J. Matrix Anal. Appl., 35 (2014), 1227-1241.
doi: 10.1137/13092232X.
|
[35]
|
A. Shashua and T. Hazan, Non-negative tensor factorization with applications to statistics and computer vision, ACM International Conference Proceeding Series: Proceedings of the 22nd International Conference on Machine Learning, 119 (2005), 792-799.
|
[36]
|
J. Sponsel and M. Dür, Factorization and cutting planes for completely positive matrices by copositive projection, Math. Program., 143 (2014), 211-229.
doi: 10.1007/s10107-012-0601-4.
|
[37]
|
J. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optim. Methods Softw., 11/12 (1999), 625-653.
doi: 10.1080/10556789908805766.
|
[38]
|
C. Xu, Z. Luo, L. Qi and Z. Chen, $\{0, 1\}$ completely positive tensors and multi-hypergraphs, Linear Algebra Appl., 510 (2016), 110-123.
doi: 10.1016/j.laa.2016.08.016.
|
[39]
|
T. Zhang and G. H. Golub, Rank-one approximation to high order tensors, SIAM J. Matrix Anal. Appl., 23 (2001), 534-550.
doi: 10.1137/S0895479899352045.
|
[40]
|
A. Zhou and J. Fan, The CP-matrix completion problem, SIAM J. Matrix Anal. Appl., 35 (2014), 127-142.
doi: 10.1137/130919490.
|
[41]
|
A. Zhou and J. Fan, Completely positive tensor recovery with minimal nuclear value, Comput. Optim. Appl., 70 (2018), 419-441.
doi: 10.1007/s10589-018-0003-5.
|