[1]
|
C. M. Bishop and M. Tipping, Variational relevance vector machines, arXiv: 1301.3838.
|
[2]
|
S. L. Brunton, J. L. Proctor and J. N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proceedings of the National Academy of Sciences, 113 (2016), 3932-3937.
doi: 10.1073/pnas.1517384113.
|
[3]
|
K. P. Champion, S. L. Brunton and J. N. Kutz, Discovery of nonlinear multiscale systems: Sampling strategies and embeddings, SIAM Journal on Applied Dynamical Systems, 18 (2019), 312-333.
doi: 10.1137/18M1188227.
|
[4]
|
K. Champion, B. Lusch, J. N. Kutz and S. L. Brunton, Data-driven discovery of coordinates and governing equations, Proceedings of the National Academy of Sciences, 116 (2019), 22445-22451.
doi: 10.1073/pnas.1906995116.
|
[5]
|
Z. Chen, Y. Liu and H. Sun, Physics-informed learning of governing equations from scarce data, Nature Communications, 12 (2021), 1-13.
|
[6]
|
Z. Chen, Y. Liu and H. Sun, Physics-informed learning of governing equations from scarce data, arXiv: 2005.03448.
|
[7]
|
H. K. Chu and M. Hayashibe, Discovering interpretable dynamics by sparsity promotion on energy and the lagrangian, IEEE Robotics and Automation Letters, 5 (2020), 2154-2160.
|
[8]
|
M. Corbetta, Application of sparse identification of nonlinear dynamics for physics-informed learning, in 2020 IEEE Aerospace Conference, IEEE, (2020), 1-8.
|
[9]
|
A. C. Faul and M. E. Tipping, A variational approach to robust regression, in International Conference on Artificial Neural Networks, Springer, (2001), 95-102.
|
[10]
|
A. C. Faul and M. E. Tipping, Analysis of sparse Bayesian learning, in Advances in Neural Information Processing Systems, (2002), 383-389.
|
[11]
|
H. Gao, L. Sun and J.-X. Wang, PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain, Journal of Computational Physics, 428 (2021), 110079.
doi: 10.1016/j.jcp.2020.110079.
|
[12]
|
X. Han, H. Gao, T. Pfaff, J.-X. Wang and L. Liu, Predicting physics in mesh-reduced space with temporal attention, in International Conference on Learning Representations, 2022.
|
[13]
|
S. M. Hirsh, D. A. Barajas-Solano and J. N. Kutz, Sparsifying priors for bayesian uncertainty quantification in model discovery, arXiv: 2107.02107.
|
[14]
|
K. Kaheman, J. N. Kutz and S. L. Brunton, SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics, Proceedings of the Royal Society A, 476 (2020), 20200279.
doi: 10.1098/rspa.2020.0279.
|
[15]
|
E. Kaiser, J. N. Kutz and S. L. Brunton, Sparse identification of nonlinear dynamics for model predictive control in the low-data limit, Proceedings of the Royal Society A, 474 (2018), 20180335.
doi: 10.1098/rspa.2018.0335.
|
[16]
|
S. Kim, P. Y. Lu, S. Mukherjee, M. Gilbert, L. Jing, V. Čeperić and M. Soljačić, Integration of neural network-based symbolic regression in deep learning for scientific discovery, IEEE Transactions on Neural Networks and Learning Systems, 32 (2020), 4166-4177.
doi: 10.1109/tnnls.2017.2665555.
|
[17]
|
X.-Y. Liu and J.-X. Wang, Physics-informed dyna-style model-based deep reinforcement learning for dynamic control, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 477 (2021), 20210618.
doi: 10.1098/rspa.2021.0618.
|
[18]
|
Z. Long, Y. Lu and B. Dong, Pde-net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network, Journal of Computational Physics, 399 (2019), 108925.
doi: 10.1016/j.jcp.2019.108925.
|
[19]
|
L. Lu, P. Jin, G. Pang, Z. Zhang and G. E. Karniadakis, Learning nonlinear operators via deeponet based on the universal approximation theorem of operators, Nature Machine Intelligence, 3 (2021), 218-229.
|
[20]
|
N. M. Mangan, T. Askham, S. L. Brunton, J. N. Kutz and J. L. Proctor, Model selection for hybrid dynamical systems via sparse regression, Proceedings of the Royal Society A, 475 (2019), 20180534.
doi: 10.1098/rspa.2018.0534.
|
[21]
|
N. M. Mangan, S. L. Brunton, J. L. Proctor and J. N. Kutz, Inferring biological networks by sparse identification of nonlinear dynamics, IEEE Transactions on Molecular, Biological and Multi-Scale Communications, 2 (2016), 52-63.
|
[22]
|
B. K. Nelson, Time series analysis using autoregressive integrated moving average (ARIMA) models, Academic Emergency Medicine, 5 (1998), 739-744.
|
[23]
|
W. Pan, A. Sootla and G.-B. Stan, Distributed reconstruction of nonlinear networks: An ADMM approach, IFAC Proceedings Volumes, 47 (2014), 3208-3213.
|
[24]
|
W. Pan, Y. Yuan, J. Gonçalves and G.-B. Stan, A sparse Bayesian approach to the identification of nonlinear state-space systems, IEEE Transactions on Automatic Control, 61 (2015), 182-187.
doi: 10.1109/TAC.2015.2426291.
|
[25]
|
W. Pan, Y. Yuan, L. Ljung, J. Gonçalves and G.-B. Stan, Identification of nonlinear state-space systems from heterogeneous datasets, IEEE Transactions on Control of Network Systems, 5 (2017), 737-747.
doi: 10.1109/TCNS.2017.2758966.
|
[26]
|
L. Piroddi, M. Farina and M. Lovera, Polynomial narx model identification: a Wienerâ€"Hammerstein benchmark, IFAC Proceedings, 42 (2009), 1074-1079.
|
[27]
|
M. Quade, M. Abel, J. Nathan Kutz and S. L. Brunton, Sparse identification of nonlinear dynamics for rapid model recovery, Chaos: An Interdisciplinary, Journal of Nonlinear Science, 28 (2018), 063116.
doi: 10.1063/1.5027470.
|
[28]
|
S. H. Rudy, S. L. Brunton, J. L. Proctor and J. N. Kutz, Data-driven discovery of partial differential equations, Science Advances, 3 (2017), e1602614.
|
[29]
|
S. H. Rudy, J. N. Kutz and S. L. Brunton, Deep learning of dynamics and signal-noise decomposition with time-stepping constraints, Journal of Computational Physics, 396 (2019), 483-506.
doi: 10.1016/j.jcp.2019.06.056.
|
[30]
|
S. Rudy, A. Alla, S. L. Brunton and J. N. Kutz, Data-driven identification of parametric partial differential equations, SIAM Journal on Applied Dynamical Systems, 18 (2019), 643-660.
doi: 10.1137/18M1191944.
|
[31]
|
F. Sun, Y. Liu and H. Sun, Physics-informed spline learning for nonlinear dynamics discovery, arXiv: 2105.02368.
|
[32]
|
L. Sun, H. Gao, S. Pan and J.-X. Wang, Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data, Computer Methods in Applied Mechanics and Engineering, 361 (2020), 112732.
doi: 10.1016/j.cma.2019.112732.
|
[33]
|
L. Sun and J.-X. Wang, Physics-constrained Bayesian neural network for fluid flow reconstruction with sparse and noisy data, Theoretical and Applied Mechanics Letters, 10 (2020), 161-169.
|
[34]
|
M. E. Tipping, Sparse Bayesian learning and the relevance vector machine, Journal of Machine Learning Research, 1 (2001), 211-244.
doi: 10.1162/15324430152748236.
|
[35]
|
M. E. Tipping, A. C. Faul, et al., Fast marginal likelihood maximisation for sparse Bayesian models, in AISTATS, 2003.
|
[36]
|
M. Ursino and C. A. Lodi, A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics, Journal of Applied Physiology, 82 (1997), 1256-1269.
|
[37]
|
S. Wang, H. Wang and P. Perdikaris, Learning the solution operator of parametric partial differential equations with physics-informed deeponets, Science Advances, 7 (2021), eabi8605.
|
[38]
|
J. Wang, X. Xie, J. Shi, W. He, Q. Chen, L. Chen, W. Gu and T. Zhou, Denoising autoencoder, a deep learning algorithm, aids the identification of a novel molecular signature of lung adenocarcinoma, Genomics, Proteomics & Bioinformatics, 18 (2020), 468-480.
|
[39]
|
H. Wu, P. Du, R. Kokate and J.-X. Wang, A semi-analytical solution and AI-based reconstruction algorithms for magnetic particle tracking, Plos One, 16 (2021), e0254051.
|
[40]
|
Y. Yang, M. Aziz Bhouri and P. Perdikaris, Bayesian differential programming for robust systems identification under uncertainty, Proceedings of the Royal Society A, 476 (2020), 20200290.
doi: 10.1098/rspa.2020.0290.
|
[41]
|
L. Zhang and H. Schaeffer, On the convergence of the SINDy algorithm, Multiscale Modeling & Simulation, 17 (2019), 948-972.
doi: 10.1137/18M1189828.
|
[42]
|
R. Zhang, Z. Chen, S. Chen, J. Zheng, O. Büyüköztürk and H. Sun, Deep long short-term memory networks for nonlinear structural seismic response prediction, Computers & Structures, 220 (2019), 55-68.
|
[43]
|
S. Zhang and G. Lin, Robust data-driven discovery of governing physical laws with error bars, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474 (2018), 20180305.
doi: 10.1098/rspa.2018.0305.
|
[44]
|
S. Zhang and G. Lin, Robust data-driven discovery of governing physical laws using a new subsampling-based sparse bayesian method to tackle four challenges (large noise, outliers, data integration, and extrapolation), arXiv: 1907.07788.
|
[45]
|
Z. Zhang and Y. Liu, Parsimony-enhanced sparse bayesian learning for robust discovery of partial differential equations, Mechanical Systems and Signal Processing, 171 (2022), 108833.
|