[1]
|
Constrained Markov Decision Processes | Eitan Altman | Taylor & Francis, URL https://www.taylorfrancis.com/books/mono/10.1201/9781315140223/constrained-markov-decision-processes-eitan-altman.
|
[2]
|
A. Ajalloeian and S. U. Stich, On the convergence of SGD with biased gradients, 2021, http://arXiv.org/abs/2008.00051.
|
[3]
|
E. Altman, B. Gaujal and A. Hordijk, Discrete-Event Control of Stochastic Networks: Multimodularityand Regularity, Springer, 2003.
doi: 10.1007/b93837.
|
[4]
|
P. Bachman, A. Sordoni and A. Trischler, Learning algorithms for active learning, in Proceedings of the 34th International Conference on Machine Learning, PMLR, 2017,301-310, https://proceedings.mlr.press/v70/bachman17a.html, ISSN: 2640-3498.
|
[5]
|
F. J. Beutler and K. W. Ross, Optimal policies for controlled Markov chains with a constraint, Journal of Mathematical Analysis and Applications, 112 (1985), 236-252.
doi: 10.1016/0022-247X(85)90288-4.
|
[6]
|
L. Bottou, Stochastic learning, in Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, Australia, February 2 - 14, 2003, Tübingen, Germany, August 4 - 16, 2003, Revised Lectures (eds. O. Bousquet, U. von Luxburg and G. Rätsch), Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2004,146-168.
doi: 10.1007/978-3-540-28650-9_7.
|
[7]
|
J. Filar and K. Vrieze, Competitive Markov Decision Processes, Springer Science & Business Media, 2012.
|
[8]
|
P. Ganesh, H. Chang, M. Strobel and R. Shokri, On the impact of machine learning randomness on group fairness, in 2023 ACM Conference on Fairness, Accountability, and Transparency, ACM, Chicago IL USA, 2023, 1789-1800.
doi: 10.1145/3593013.3594116.
|
[9]
|
S. Ghadimi and G. Lan, Stochastic first- and Zeroth-Order methods for nonconvex stochastic programming, SIAM Journal on Optimization, 23 (2013), 2341-2368.
doi: 10.1137/120880811.
|
[10]
|
J. W. Huang and V. Krishnamurthy, Transmission control in cognitive radio as a Markovian dynamic game: Structural result on randomized threshold policies, IEEE Transactions on Communications, 58 (2010), 301-310.
doi: 10.1109/TCOMM.2010.01.080157.
|
[11]
|
J. W. Huang, H. Mansour and V. Krishnamurthy, A dynamical games approach to transmission-rate adaptation in multimedia WLAN, IEEE Transactions on Signal Processing, 58 (2010), 3635-3646, Conference Name: IEEE Transactions on Signal Processing.
doi: 10.1109/TSP.2010.2046894.
|
[12]
|
A. Jain and V. Krishnamurthy, Controlling federated learning for covertness, 2023, http://arXiv.org/abs/2308.08825, arXiv: 2308.08825 [cs, eess].
|
[13]
|
P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, R. G. L. D'Oliveira, H. Eichner, S. E. Rouayheb, D. Evans, J. Gardner, Z. Garrett, A. Gascón, B. Ghazi, P. B. Gibbons, M. Gruteser, Z. Harchaoui, C. He, L. He, Z. Huo, B. Hutchinson, J. Hsu, M. Jaggi, T. Javidi, G. Joshi, M. Khodak, J. Konečný, A. Korolova, F. Koushanfar, S. Koyejo, T. Lepoint, Y. Liu, P. Mittal, M. Mohri, R. Nock, A. Özgür, R. Pagh, M. Raykova, H. Qi, D. Ramage, R. Raskar, D. Song, W. Song, S. U. Stich, Z. Sun, A. T. Suresh, F. Tramèr, P. Vepakomma, J. Wang, L. Xiong, Z. Xu, Q. Yang, F. X. Yu, H. Yu and S. Zhao, Advances and open problems in federated learning, 2021, http://arXiv.org/abs/1912.04977, arXiv: 1912.04977 [cs, stat].
doi: 10.1561/9781680837896.
|
[14]
|
N. Kourtellis, K. Katevas and D. Perino, FLaaS: Federated learning as a service, in Proceedings of the 1st Workshop on Distributed Machine Learning, ACM, Barcelona Spain, 2020, 7-13.
doi: 10.1145/3426745.3431337.
|
[15]
|
H. Kushner and G. G. Yin, Stochastic Approximation and Recursive Algorithms and Applications, Springer Science & Business Media, 2003, Google-Books-ID: EC2w1SaPb7YC.
|
[16]
|
R. T. A. J. Leenders, Models for network dynamics: A Markovian framework*, Journal of Mathematical Sociology, Publisher: Taylor & Francis Group.
doi: 10.1080/0022250X.1995.9990149.
|
[17]
|
B. McMahan, E. Moore, D. Ramage, S. Hampson and B. A. Arcas, Communication-efficient learning of deep networks from decentralizeddata, in Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, PMLR, 2017, https://proceedings.mlr.press/v54/mcmahan17a.html.
|
[18]
|
M. H. Ngo and V. Krishnamurthy, Optimality of threshold policies for transmission scheduling in correlated fading channels, IEEE Transactions on Communications, 57 (2009), 2474-2483.
doi: 10.1109/TCOMM.2009.08.070350.
|
[19]
|
M. H. Ngo and V. Krishnamurthy, Monotonicity of constrained optimal transmission policies in correlated fading channels with ARQ, IEEE Transactions on Signal Processing, 58 (2010), 438-451.
doi: 10.1109/TSP.2009.2027735.
|
[20]
|
A. E. Ouadrhiri and A. Abdelhadi, Differential privacy for deep and federated learning: a survey, IEEE Access, 10 (2022), 22359-22380, Conference Name: IEEE Access.
doi: 10.1109/ACCESS.2022.3151670.
|
[21]
|
A. Rodio, F. Faticanti, O. Marfoq, G. Neglia and E. Leonardi, Federated learning under heterogeneous and correlated client availability, 2023, http://arXiv.org/abs/2301.04632, arXiv: 2301.04632 [cs].
doi: 10.1109/INFOCOM53939.2023.10228876.
|
[22]
|
Y. Rychener, B. Taskesen and D. Kuhn, Metrizing fairness, 2023, http://arXiv.org/abs/2205.15049, arXiv: 2205.15049 [cs, math, stat].
|
[23]
|
A. Sekhari, J. Acharya, G. Kamath and A. T. Suresh, Remember what you want to forget: Algorithms for machine unlearning, in Advances in Neural Information Processing Systems, vol. 34, Curran Associates, Inc., 2021, 18075-18086, https://proceedings.neurips.cc/paper_files/paper/2021/hash/9627c45df543c816a3ddf2d8ea686a99-Abstract.html.
|
[24]
|
J. N. Tsitsiklis, K. Xu and Z. Xu, Private sequential learning, Operations Research, 69 (2021), 1575-1590.
doi: 10.1287/opre.2020.2021.
|
[25]
|
O. J. Vrieze, S. H. Tijs, T. E. S. Raghavan and J. A. Filar, A finite algorithm for the switching control stochastic game, Operations-Research-Spektrum, 5 (1983), 15-24.
doi: 10.1007/BF01720283.
|
[26]
|
J. Xu, K. Xu and D. Yang, Learner-private convex optimization, IEEE Transactions on Information Theory, 69 (2023), 528-547.
doi: 10.1109/TIT.2022.3203989.
|