[1]

Constrained Markov Decision Processes  Eitan Altman  Taylor & Francis, URL https://www.taylorfrancis.com/books/mono/10.1201/9781315140223/constrainedmarkovdecisionprocesseseitanaltman.

[2]

A. Ajalloeian and S. U. Stich, On the convergence of SGD with biased gradients, 2021, http://arXiv.org/abs/2008.00051.

[3]

E. Altman, B. Gaujal and A. Hordijk, DiscreteEvent Control of Stochastic Networks: Multimodularityand Regularity, Springer, 2003.
doi: 10.1007/b93837.

[4]

P. Bachman, A. Sordoni and A. Trischler, Learning algorithms for active learning, in Proceedings of the 34th International Conference on Machine Learning, PMLR, 2017,301310, https://proceedings.mlr.press/v70/bachman17a.html, ISSN: 26403498.

[5]

F. J. Beutler and K. W. Ross, Optimal policies for controlled Markov chains with a constraint, Journal of Mathematical Analysis and Applications, 112 (1985), 236252.
doi: 10.1016/0022247X(85)902884.

[6]

L. Bottou, Stochastic learning, in Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, Australia, February 2  14, 2003, Tübingen, Germany, August 4  16, 2003, Revised Lectures (eds. O. Bousquet, U. von Luxburg and G. Rätsch), Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2004,146168.
doi: 10.1007/9783540286509_7.

[7]

J. Filar and K. Vrieze, Competitive Markov Decision Processes, Springer Science & Business Media, 2012.

[8]

P. Ganesh, H. Chang, M. Strobel and R. Shokri, On the impact of machine learning randomness on group fairness, in 2023 ACM Conference on Fairness, Accountability, and Transparency, ACM, Chicago IL USA, 2023, 17891800.
doi: 10.1145/3593013.3594116.

[9]

S. Ghadimi and G. Lan, Stochastic first and ZerothOrder methods for nonconvex stochastic programming, SIAM Journal on Optimization, 23 (2013), 23412368.
doi: 10.1137/120880811.

[10]

J. W. Huang and V. Krishnamurthy, Transmission control in cognitive radio as a Markovian dynamic game: Structural result on randomized threshold policies, IEEE Transactions on Communications, 58 (2010), 301310.
doi: 10.1109/TCOMM.2010.01.080157.

[11]

J. W. Huang, H. Mansour and V. Krishnamurthy, A dynamical games approach to transmissionrate adaptation in multimedia WLAN, IEEE Transactions on Signal Processing, 58 (2010), 36353646, Conference Name: IEEE Transactions on Signal Processing.
doi: 10.1109/TSP.2010.2046894.

[12]

A. Jain and V. Krishnamurthy, Controlling federated learning for covertness, 2023, http://arXiv.org/abs/2308.08825, arXiv: 2308.08825 [cs, eess].

[13]

P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, R. G. L. D'Oliveira, H. Eichner, S. E. Rouayheb, D. Evans, J. Gardner, Z. Garrett, A. Gascón, B. Ghazi, P. B. Gibbons, M. Gruteser, Z. Harchaoui, C. He, L. He, Z. Huo, B. Hutchinson, J. Hsu, M. Jaggi, T. Javidi, G. Joshi, M. Khodak, J. Konečný, A. Korolova, F. Koushanfar, S. Koyejo, T. Lepoint, Y. Liu, P. Mittal, M. Mohri, R. Nock, A. Özgür, R. Pagh, M. Raykova, H. Qi, D. Ramage, R. Raskar, D. Song, W. Song, S. U. Stich, Z. Sun, A. T. Suresh, F. Tramèr, P. Vepakomma, J. Wang, L. Xiong, Z. Xu, Q. Yang, F. X. Yu, H. Yu and S. Zhao, Advances and open problems in federated learning, 2021, http://arXiv.org/abs/1912.04977, arXiv: 1912.04977 [cs, stat].
doi: 10.1561/9781680837896.

[14]

N. Kourtellis, K. Katevas and D. Perino, FLaaS: Federated learning as a service, in Proceedings of the 1st Workshop on Distributed Machine Learning, ACM, Barcelona Spain, 2020, 713.
doi: 10.1145/3426745.3431337.

[15]

H. Kushner and G. G. Yin, Stochastic Approximation and Recursive Algorithms and Applications, Springer Science & Business Media, 2003, GoogleBooksID: EC2w1SaPb7YC.

[16]

R. T. A. J. Leenders, Models for network dynamics: A Markovian framework*, Journal of Mathematical Sociology, Publisher: Taylor & Francis Group.
doi: 10.1080/0022250X.1995.9990149.

[17]

B. McMahan, E. Moore, D. Ramage, S. Hampson and B. A. Arcas, Communicationefficient learning of deep networks from decentralizeddata, in Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, PMLR, 2017, https://proceedings.mlr.press/v54/mcmahan17a.html.

[18]

M. H. Ngo and V. Krishnamurthy, Optimality of threshold policies for transmission scheduling in correlated fading channels, IEEE Transactions on Communications, 57 (2009), 24742483.
doi: 10.1109/TCOMM.2009.08.070350.

[19]

M. H. Ngo and V. Krishnamurthy, Monotonicity of constrained optimal transmission policies in correlated fading channels with ARQ, IEEE Transactions on Signal Processing, 58 (2010), 438451.
doi: 10.1109/TSP.2009.2027735.

[20]

A. E. Ouadrhiri and A. Abdelhadi, Differential privacy for deep and federated learning: a survey, IEEE Access, 10 (2022), 2235922380, Conference Name: IEEE Access.
doi: 10.1109/ACCESS.2022.3151670.

[21]

A. Rodio, F. Faticanti, O. Marfoq, G. Neglia and E. Leonardi, Federated learning under heterogeneous and correlated client availability, 2023, http://arXiv.org/abs/2301.04632, arXiv: 2301.04632 [cs].
doi: 10.1109/INFOCOM53939.2023.10228876.

[22]

Y. Rychener, B. Taskesen and D. Kuhn, Metrizing fairness, 2023, http://arXiv.org/abs/2205.15049, arXiv: 2205.15049 [cs, math, stat].

[23]

A. Sekhari, J. Acharya, G. Kamath and A. T. Suresh, Remember what you want to forget: Algorithms for machine unlearning, in Advances in Neural Information Processing Systems, vol. 34, Curran Associates, Inc., 2021, 1807518086, https://proceedings.neurips.cc/paper_files/paper/2021/hash/9627c45df543c816a3ddf2d8ea686a99Abstract.html.

[24]

J. N. Tsitsiklis, K. Xu and Z. Xu, Private sequential learning, Operations Research, 69 (2021), 15751590.
doi: 10.1287/opre.2020.2021.

[25]

O. J. Vrieze, S. H. Tijs, T. E. S. Raghavan and J. A. Filar, A finite algorithm for the switching control stochastic game, OperationsResearchSpektrum, 5 (1983), 1524.
doi: 10.1007/BF01720283.

[26]

J. Xu, K. Xu and D. Yang, Learnerprivate convex optimization, IEEE Transactions on Information Theory, 69 (2023), 528547.
doi: 10.1109/TIT.2022.3203989.
