September  2006, 1(3): 513-514. doi: 10.3934/nhm.2006.1.513

Erratum

1. 

CERMICS, Ecole Nationale des Ponts et Chaussées & INRIA Rocquencourt, 6 & 8 Av. B. Pascal, 77455 Champs-sur-Marne, France

Received  July 2006 Published  July 2006

In this erratum, we correct a mistake that has propagated in the error analysis of [4].
Citation: Antoine Gloria Cermics. Erratum. Networks & Heterogeneous Media, 2006, 1 (3) : 513-514. doi: 10.3934/nhm.2006.1.513
[1]

Shalela Mohd Mahali, Song Wang, Xia Lou. Determination of effective diffusion coefficients of drug delivery devices by a state observer approach. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1119-1136. doi: 10.3934/dcdsb.2011.16.1119

[2]

Nicolas Forcadel, Wilfredo Salazar, Mamdouh Zaydan. Specified homogenization of a discrete traffic model leading to an effective junction condition. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2173-2206. doi: 10.3934/cpaa.2018104

[3]

Guillaume Bal. Homogenization in random media and effective medium theory for high frequency waves. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 473-492. doi: 10.3934/dcdsb.2007.8.473

[4]

Y. Efendiev, B. Popov. On homogenization of nonlinear hyperbolic equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 295-309. doi: 10.3934/cpaa.2005.4.295

[5]

Agnes Lamacz, Ben Schweizer. Effective acoustic properties of a meta-material consisting of small Helmholtz resonators. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 815-835. doi: 10.3934/dcdss.2017041

[6]

Jean Louis Woukeng. $\sum $-convergence and reiterated homogenization of nonlinear parabolic operators. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1753-1789. doi: 10.3934/cpaa.2010.9.1753

[7]

Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks & Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014

[8]

M. R. Arias, R. Benítez. Properties of solutions for nonlinear Volterra integral equations. Conference Publications, 2003, 2003 (Special) : 42-47. doi: 10.3934/proc.2003.2003.42

[9]

Alfonso Castro, Jorge Cossio, Carlos Vélez. Existence and qualitative properties of solutions for nonlinear Dirichlet problems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 123-140. doi: 10.3934/dcds.2013.33.123

[10]

Anna Marciniak-Czochra, Andro Mikelić. A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1065-1077. doi: 10.3934/dcdss.2014.7.1065

[11]

Markus Gahn, Maria Neuss-Radu, Peter Knabner. Effective interface conditions for processes through thin heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface. Networks & Heterogeneous Media, 2018, 13 (4) : 609-640. doi: 10.3934/nhm.2018028

[12]

Fabio Camilli, Claudio Marchi. On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems. Networks & Heterogeneous Media, 2011, 6 (1) : 61-75. doi: 10.3934/nhm.2011.6.61

[13]

Frédéric Legoll, William Minvielle. Variance reduction using antithetic variables for a nonlinear convex stochastic homogenization problem. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 1-27. doi: 10.3934/dcdss.2015.8.1

[14]

M. M. Cavalcanti, V.N. Domingos Cavalcanti, D. Andrade, T. F. Ma. Homogenization for a nonlinear wave equation in domains with holes of small capacity. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 721-743. doi: 10.3934/dcds.2006.16.721

[15]

Fabio Punzo. Support properties of solutions to nonlinear parabolic equations with variable density in the hyperbolic space. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 657-670. doi: 10.3934/dcdss.2012.5.657

[16]

Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1749-1762. doi: 10.3934/dcds.2017073

[17]

Andrei Korobeinikov, Philip K. Maini. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences & Engineering, 2004, 1 (1) : 57-60. doi: 10.3934/mbe.2004.1.57

[18]

Huiling Li, Mingxin Wang. Properties of blow-up solutions to a parabolic system with nonlinear localized terms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 683-700. doi: 10.3934/dcds.2005.13.683

[19]

Aleksandra Orpel. A note on the existence and properties of evanescent solutions for nonlinear elliptic problems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2631-2639. doi: 10.3934/dcdsb.2014.19.2631

[20]

Xavier Cabré. Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 331-359. doi: 10.3934/dcds.2002.8.331

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]