-
Previous Article
The many facets of internet topology and traffic
- NHM Home
- This Issue
-
Next Article
The impact of cell crowding and active cell movement on vascular tumour growth
Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit
1. | Graduate school of Mathematical Sciences, University of Tokyo, Komaba 3-8-1, Tokyo 153-8914, Japan |
2. | Department of Computer Science, University of Electro-Communications, Chofu, Tokyo 182-8585, Japan |
3. | Department of Mathematics, Tongji University, Siping Road 1239, Shanghai, China |
[1] |
Meiyue Jiang, Juncheng Wei. $2\pi$-Periodic self-similar solutions for the anisotropic affine curve shortening problem II. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 785-803. doi: 10.3934/dcds.2016.36.785 |
[2] |
Jong-Shenq Guo, Chang-Hong Wu. Front propagation for a two-dimensional periodic monostable lattice dynamical system. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 197-223. doi: 10.3934/dcds.2010.26.197 |
[3] |
Kai-Seng Chou, Ying-Chuen Kwong. General initial data for a class of parabolic equations including the curve shortening problem. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2963-2986. doi: 10.3934/dcds.2020157 |
[4] |
Guo Lin, Shuxia Pan. Periodic traveling wave solutions of periodic integrodifference systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3005-3031. doi: 10.3934/dcdsb.2020049 |
[5] |
Shi-Liang Wu, Cheng-Hsiung Hsu. Propagation of monostable traveling fronts in discrete periodic media with delay. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2987-3022. doi: 10.3934/dcds.2018128 |
[6] |
Mohar Guha, Keith Promislow. Front propagation in a noisy, nonsmooth, excitable medium. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 617-638. doi: 10.3934/dcds.2009.23.617 |
[7] |
Yana Nec, Vladimir A Volpert, Alexander A Nepomnyashchy. Front propagation problems with sub-diffusion. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 827-846. doi: 10.3934/dcds.2010.27.827 |
[8] |
Patrizia Donato, Florian Gaveau. Homogenization and correctors for the wave equation in non periodic perforated domains. Networks and Heterogeneous Media, 2008, 3 (1) : 97-124. doi: 10.3934/nhm.2008.3.97 |
[9] |
Sista Sivaji Ganesh, Vivek Tewary. Bloch wave approach to almost periodic homogenization and approximations of effective coefficients. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 1989-2024. doi: 10.3934/dcdsb.2021119 |
[10] |
Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3271-3284. doi: 10.3934/dcdss.2020129 |
[11] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[12] |
Hongqiu Chen, Jerry L. Bona. Periodic traveling--wave solutions of nonlinear dispersive evolution equations. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4841-4873. doi: 10.3934/dcds.2013.33.4841 |
[13] |
Benoît Perthame, P. E. Souganidis. Front propagation for a jump process model arising in spacial ecology. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1235-1246. doi: 10.3934/dcds.2005.13.1235 |
[14] |
Emeric Bouin. A Hamilton-Jacobi approach for front propagation in kinetic equations. Kinetic and Related Models, 2015, 8 (2) : 255-280. doi: 10.3934/krm.2015.8.255 |
[15] |
Bo Su and Martin Burger. Global weak solutions of non-isothermal front propagation problem. Electronic Research Announcements, 2007, 13: 46-52. |
[16] |
Elena Trofimchuk, Manuel Pinto, Sergei Trofimchuk. On the minimal speed of front propagation in a model of the Belousov-Zhabotinsky reaction. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1769-1781. doi: 10.3934/dcdsb.2014.19.1769 |
[17] |
Mikhail Kuzmin, Stefano Ruggerini. Front propagation in diffusion-aggregation models with bi-stable reaction. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 819-833. doi: 10.3934/dcdsb.2011.16.819 |
[18] |
Margarita Arias, Juan Campos, Cristina Marcelli. Fastness and continuous dependence in front propagation in Fisher-KPP equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 11-30. doi: 10.3934/dcdsb.2009.11.11 |
[19] |
Luisa Malaguti, Cristina Marcelli, Serena Matucci. Continuous dependence in front propagation of convective reaction-diffusion equations. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1083-1098. doi: 10.3934/cpaa.2010.9.1083 |
[20] |
Mia Jukić, Hermen Jan Hupkes. Curvature-driven front propagation through planar lattices in oblique directions. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2189-2251. doi: 10.3934/cpaa.2022055 |
2021 Impact Factor: 1.41
Tools
Metrics
Other articles
by authors
[Back to Top]