March  2007, 2(1): 1-36. doi: 10.3934/nhm.2007.2.1

Time-dependent systems of generalized Young measures

1. 

SISSA-International School for Advanced Studies, Via Beirut 2-4, 34014, Trieste, Italy, Italy

2. 

SISSA-International School for Advanced Studies, Via Beirut 2-4, 34014 Trieste, Italy

3. 

SISSA-International School for Advanced Studies, Via Beirut 2-4,, 34014, Trieste, Italy

Received  July 2006 Revised  September 2006 Published  December 2006

In this paper some new tools for the study of evolution problems in the framework of Young measures are introduced. A suitable notion of time-dependent system of generalized Young measures is defined, which allows us to extend the classical notions of total variation and absolute continuity with respect to time, as well as the notion of time derivative. The main results are a Helly type theorem for sequences of systems of generalized Young measures and a theorem about the existence of the time derivative for systems with bounded variation with respect to time.
Citation: G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Time-dependent systems of generalized Young measures. Networks and Heterogeneous Media, 2007, 2 (1) : 1-36. doi: 10.3934/nhm.2007.2.1
[1]

Denis R. Akhmetov, Renato Spigler. $L^1$-estimates for the higher-order derivatives of solutions to parabolic equations subject to initial values of bounded total variation. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1051-1074. doi: 10.3934/cpaa.2007.6.1051

[2]

Harun Karsli, Purshottam Narain Agrawal. Rate of convergence of Stancu type modified $ q $-Gamma operators for functions with derivatives of bounded variation. Mathematical Foundations of Computing, 2022  doi: 10.3934/mfc.2022002

[3]

Qilin Wang, Shengji Li, Kok Lay Teo. Continuity of second-order adjacent derivatives for weak perturbation maps in vector optimization. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 417-433. doi: 10.3934/naco.2011.1.417

[4]

Steffen Arnrich. Modelling phase transitions via Young measures. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 29-48. doi: 10.3934/dcdss.2012.5.29

[5]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic two-scale convergence and Young measures. Networks and Heterogeneous Media, 2022, 17 (2) : 227-254. doi: 10.3934/nhm.2022004

[6]

Víctor Almeida, Jorge J. Betancor. Variation and oscillation for harmonic operators in the inverse Gaussian setting. Communications on Pure and Applied Analysis, 2022, 21 (2) : 419-470. doi: 10.3934/cpaa.2021183

[7]

Franco Obersnel, Pierpaolo Omari. Multiple bounded variation solutions of a capillarity problem. Conference Publications, 2011, 2011 (Special) : 1129-1137. doi: 10.3934/proc.2011.2011.1129

[8]

Sébastien Gouëzel. An interval map with a spectral gap on Lipschitz functions, but not on bounded variation functions. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1205-1208. doi: 10.3934/dcds.2009.24.1205

[9]

Yunho Kim, Luminita A. Vese. Image recovery using functions of bounded variation and Sobolev spaces of negative differentiability. Inverse Problems and Imaging, 2009, 3 (1) : 43-68. doi: 10.3934/ipi.2009.3.43

[10]

Anne-Sophie de Suzzoni. Continuity of the flow of the Benjamin-Bona-Mahony equation on probability measures. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2905-2920. doi: 10.3934/dcds.2015.35.2905

[11]

Samia Challal, Abdeslem Lyaghfouri. Hölder continuity of solutions to the $A$-Laplace equation involving measures. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1577-1583. doi: 10.3934/cpaa.2009.8.1577

[12]

Vítor Araújo. Semicontinuity of entropy, existence of equilibrium states and continuity of physical measures. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 371-386. doi: 10.3934/dcds.2007.17.371

[13]

Zhihui Yuan. Multifractal analysis of random weak Gibbs measures. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5367-5405. doi: 10.3934/dcds.2017234

[14]

Franco Obersnel, Pierpaolo Omari. Existence, regularity and boundary behaviour of bounded variation solutions of a one-dimensional capillarity equation. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 305-320. doi: 10.3934/dcds.2013.33.305

[15]

Matthias Gerdts, Martin Kunkel. Convergence analysis of Euler discretization of control-state constrained optimal control problems with controls of bounded variation. Journal of Industrial and Management Optimization, 2014, 10 (1) : 311-336. doi: 10.3934/jimo.2014.10.311

[16]

Bianca Satco. Set-valued problems under bounded variation assumptions involving the Hausdorff excess. Discrete and Continuous Dynamical Systems - S, 2022, 15 (3) : 603-620. doi: 10.3934/dcdss.2021154

[17]

Shuang-Lin Jing, Hai-Feng Huo, Hong Xiang. Modelling the effects of ozone concentration and pulse vaccination on seasonal influenza outbreaks in Gansu Province, China. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 1877-1911. doi: 10.3934/dcdsb.2021113

[18]

J. Leonel Rocha, Danièle Fournier-Prunaret, Abdel-Kaddous Taha. Strong and weak Allee effects and chaotic dynamics in Richards' growths. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2397-2425. doi: 10.3934/dcdsb.2013.18.2397

[19]

Yongli Cai, Malay Banerjee, Yun Kang, Weiming Wang. Spatiotemporal complexity in a predator--prey model with weak Allee effects. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1247-1274. doi: 10.3934/mbe.2014.11.1247

[20]

Yangdong Xu, Shengjie Li. Continuity of the solution mappings to parametric generalized non-weak vector Ky Fan inequalities. Journal of Industrial and Management Optimization, 2017, 13 (2) : 967-975. doi: 10.3934/jimo.2016056

2020 Impact Factor: 1.213

Metrics

  • PDF downloads (68)
  • HTML views (0)
  • Cited by (14)

[Back to Top]