June  2007, 2(2): 333-357. doi: 10.3934/nhm.2007.2.333

Modeling cell movement in anisotropic and heterogeneous network tissues


Politecnico di Torino, 24 Corso Duca degli A bruzzi, Torion 10129, Italy, Italy


Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1

Received  December 2006 Revised  March 2007 Published  March 2007

Cell motion and interaction with the extracellular matrix is studied deriving a kinetic model and considering its diffusive limit. The model takes into account the chemotactic and haptotactic effects, and obtains friction as a result of the interactions between cells and between cells and the fibrous environment. The evolution depends on the fibre distribution, as cells preferentially move along the fibre direction and tend to cleave and remodel the extracellular matrix when their direction of motion is not aligned with the fibre direction. Simulations are performed to describe the behavior of an ensemble of cells under the action of a chemotactic field and in the presence of heterogeneous and anisotropic fibre networks.
Citation: A. Chauviere, T. Hillen, L. Preziosi. Modeling cell movement in anisotropic and heterogeneous network tissues. Networks & Heterogeneous Media, 2007, 2 (2) : 333-357. doi: 10.3934/nhm.2007.2.333

Thomas Hillen, Peter Hinow, Zhi-An Wang. Mathematical analysis of a kinetic model for cell movement in network tissues. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1055-1080. doi: 10.3934/dcdsb.2010.14.1055


Gheorghe Craciun, Baltazar Aguda, Avner Friedman. Mathematical Analysis Of A Modular Network Coordinating The Cell Cycle And Apoptosis. Mathematical Biosciences & Engineering, 2005, 2 (3) : 473-485. doi: 10.3934/mbe.2005.2.473


Yu-Hsien Chang, Guo-Chin Jau. The behavior of the solution for a mathematical model for analysis of the cell cycle. Communications on Pure & Applied Analysis, 2006, 5 (4) : 779-792. doi: 10.3934/cpaa.2006.5.779


Mostafa Adimy, Oscar Angulo, Catherine Marquet, Leila Sebaa. A mathematical model of multistage hematopoietic cell lineages. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 1-26. doi: 10.3934/dcdsb.2014.19.1


J. C. Dallon, Lynnae C. Despain, Emily J. Evans, Christopher P. Grant. A continuous-time stochastic model of cell motion in the presence of a chemoattractant. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020129


Qiaojun Situ, Jinzhi Lei. A mathematical model of stem cell regeneration with epigenetic state transitions. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1379-1397. doi: 10.3934/mbe.2017071


Amy H. Lin Erickson, Alison Wise, Stephen Fleming, Margaret Baird, Zabeen Lateef, Annette Molinaro, Miranda Teboh-Ewungkem, Lisette dePillis. A preliminary mathematical model of skin dendritic cell trafficking and induction of T cell immunity. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 323-336. doi: 10.3934/dcdsb.2009.12.323


V. Lanza, D. Ambrosi, L. Preziosi. Exogenous control of vascular network formation in vitro: a mathematical model. Networks & Heterogeneous Media, 2006, 1 (4) : 621-637. doi: 10.3934/nhm.2006.1.621


Reihaneh Mostolizadeh, Zahra Afsharnezhad, Anna Marciniak-Czochra. Mathematical model of Chimeric Anti-gene Receptor (CAR) T cell therapy with presence of cytokine. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 63-80. doi: 10.3934/naco.2018004


A. Chauviere, L. Preziosi, T. Hillen. Modeling the motion of a cell population in the extracellular matrix. Conference Publications, 2007, 2007 (Special) : 250-259. doi: 10.3934/proc.2007.2007.250


Boguslaw Twarog, Robert Pekala, Jacek Bartman, Zbigniew Gomolka. The changes of air gap in inductive engines as vibration indicator aided by mathematical model and artificial neural network. Conference Publications, 2007, 2007 (Special) : 1005-1012. doi: 10.3934/proc.2007.2007.1005


Michael Herty, Axel Klar, Sébastien Motsch, Ferdinand Olawsky. A smooth model for fiber lay-down processes and its diffusion approximations. Kinetic & Related Models, 2009, 2 (3) : 489-502. doi: 10.3934/krm.2009.2.489


Lisette dePillis, Trevor Caldwell, Elizabeth Sarapata, Heather Williams. Mathematical modeling of regulatory T cell effects on renal cell carcinoma treatment. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 915-943. doi: 10.3934/dcdsb.2013.18.915


Ali Ashher Zaidi, Bruce Van Brunt, Graeme Charles Wake. A model for asymmetrical cell division. Mathematical Biosciences & Engineering, 2015, 12 (3) : 491-501. doi: 10.3934/mbe.2015.12.491


Julien Dambrine, Nicolas Meunier, Bertrand Maury, Aude Roudneff-Chupin. A congestion model for cell migration. Communications on Pure & Applied Analysis, 2012, 11 (1) : 243-260. doi: 10.3934/cpaa.2012.11.243


Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao. Automatic extraction of cell nuclei using dilated convolutional network. Inverse Problems & Imaging, 2020, 0 (0) : 1-14. doi: 10.3934/ipi.2020049


David J. Aldous. A stochastic complex network model. Electronic Research Announcements, 2003, 9: 152-161.


Andrey Zvyagin. Attractors for model of polymer solutions motion. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6305-6325. doi: 10.3934/dcds.2018269


Jiangtao Mo, Liqun Qi, Zengxin Wei. A network simplex algorithm for simple manufacturing network model. Journal of Industrial & Management Optimization, 2005, 1 (2) : 251-273. doi: 10.3934/jimo.2005.1.251


Keith E. Howard. A size structured model of cell dwarfism. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 471-484. doi: 10.3934/dcdsb.2001.1.471

2019 Impact Factor: 1.053


  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]