June  2008, 3(2): 267-276. doi: 10.3934/nhm.2008.3.267

Multi-level science mapping with asymmetrical paradigmatic proximity


CREA, CNRS/Ecole Polytechnique, 1 rue Descartes, 75005, Paris, France, France

Received  October 2007 Revised  February 2008 Published  March 2008

We propose a series of methods to reconstruct and represent the evolution of a field of science at different levels: namely micro, meso and macro levels. We use a previously introduced asymmetric measure of paradigmatic proximity between terms that enables us to extract structure from a large publications database. We apply our set of methods on a case study from the complex systems community through the mapping of more than 400 complex systems science concepts indexed from a database as large as several millions of journal papers. We will first summarize the main properties of our asymmetric proximity measure. Then we show how salient paradigmatic fields can be embedded into a 2-dimensional visualization into which terms are plotted according to their relative specificity and generality index. This meso-level helps us producing macroscopic maps of the field of complex systems science, built upon the former paradigmatic fields and their articulations.
Citation: Jean-Philippe Cointet, David Chavalarias. Multi-level science mapping with asymmetrical paradigmatic proximity. Networks and Heterogeneous Media, 2008, 3 (2) : 267-276. doi: 10.3934/nhm.2008.3.267

Byung-Soo Lee. Existence and convergence results for best proximity points in cone metric spaces. Numerical Algebra, Control and Optimization, 2014, 4 (2) : 133-140. doi: 10.3934/naco.2014.4.133


Duraisamy Balraj, Muthaiah Marudai, Zoran D. Mitrovic, Ozgur Ege, Veeraraghavan Piramanantham. Existence of best proximity points satisfying two constraint inequalities. Electronic Research Archive, 2020, 28 (1) : 549-557. doi: 10.3934/era.2020028


Wei Wang, Degen Huang, Haitao Yu. Word sense disambiguation based on stretchable matching of the semantic template. Mathematical Foundations of Computing, 2021, 4 (1) : 1-13. doi: 10.3934/mfc.2020022


Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Stability of the dynamics of an asymmetric neural network. Communications on Pure and Applied Analysis, 2009, 8 (2) : 655-671. doi: 10.3934/cpaa.2009.8.655


Jingmei Zhou, Xiangmo Zhao, Xin Cheng, Zhigang Xu. Visualization analysis of traffic congestion based on floating car data. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1423-1433. doi: 10.3934/dcdss.2015.8.1423


Fang Liu, Zhen Jin, Cai-Yun Wang. Global analysis of SIRI knowledge dissemination model with recalling rate. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3099-3114. doi: 10.3934/dcdss.2020116


Zari Dzalilov, Iradj Ouveysi, Alexander Rubinov. An extended lifetime measure for telecommunication network. Journal of Industrial and Management Optimization, 2008, 4 (2) : 329-337. doi: 10.3934/jimo.2008.4.329


Zhuwei Qin, Fuxun Yu, Chenchen Liu, Xiang Chen. How convolutional neural networks see the world --- A survey of convolutional neural network visualization methods. Mathematical Foundations of Computing, 2018, 1 (2) : 149-180. doi: 10.3934/mfc.2018008


Expeditho Mtisi, Herieth Rwezaura, Jean Michel Tchuenche. A mathematical analysis of malaria and tuberculosis co-dynamics. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 827-864. doi: 10.3934/dcdsb.2009.12.827


Susu Zhang, Jiancheng Ni, Lijun Hou, Zili Zhou, Jie Hou, Feng Gao. Global-Affine and Local-Specific Generative Adversarial Network for semantic-guided image generation. Mathematical Foundations of Computing, 2021, 4 (3) : 145-165. doi: 10.3934/mfc.2021009


Jose-Luis Roca-Gonzalez. Designing dynamical systems for security and defence network knowledge management. A case of study: Airport bird control falconers organizations. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1311-1329. doi: 10.3934/dcdss.2015.8.1311


Zindoga Mukandavire, Abba B. Gumel, Winston Garira, Jean Michel Tchuenche. Mathematical analysis of a model for HIV-malaria co-infection. Mathematical Biosciences & Engineering, 2009, 6 (2) : 333-362. doi: 10.3934/mbe.2009.6.333


Laura Fumanelli, Pierre Magal, Dongmei Xiao, Xiao Yu. Qualitative analysis of a model for co-culture of bacteria and amoebae. Mathematical Biosciences & Engineering, 2012, 9 (2) : 259-279. doi: 10.3934/mbe.2012.9.259


Kazeem Oare Okosun, Robert Smith?. Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences & Engineering, 2017, 14 (2) : 377-405. doi: 10.3934/mbe.2017024


Salihu Sabiu Musa, Nafiu Hussaini, Shi Zhao, He Daihai. Dynamical analysis of chikungunya and dengue co-infection model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1907-1933. doi: 10.3934/dcdsb.2020009


Serena Brianzoni, Giovanni Campisi. Dynamical analysis of a banking duopoly model with capital regulation and asymmetric costs. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : 5807-5825. doi: 10.3934/dcdsb.2021116


Subrata Dasgupta. Disentangling data, information and knowledge. Big Data & Information Analytics, 2016, 1 (4) : 377-389. doi: 10.3934/bdia.2016016


Zhong-Kai Guo, Hai-Feng Huo, Hong Xiang. Analysis of an age-structured model for HIV-TB co-infection. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 199-228. doi: 10.3934/dcdsb.2021037


Akinori Awazu. Input-dependent wave propagations in asymmetric cellular automata: Possible behaviors of feed-forward loop in biological reaction network. Mathematical Biosciences & Engineering, 2008, 5 (3) : 419-427. doi: 10.3934/mbe.2008.5.419


Mark G. Burch, Karly A. Jacobsen, Joseph H. Tien, Grzegorz A. Rempała. Network-based analysis of a small Ebola outbreak. Mathematical Biosciences & Engineering, 2017, 14 (1) : 67-77. doi: 10.3934/mbe.2017005

2021 Impact Factor: 1.41


  • PDF downloads (54)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]