June  2008, 3(2): 333-343. doi: 10.3934/nhm.2008.3.333

The simulation of gene knock-out in scale-free random Boolean models of genetic networks

1. 

Dipartimento di scienze sociali, cognitive e quantitative, Università di Modena e Reggio Emilia, Via Allegri 9, 42100 Reggio Emilia, Italy, Italy, Italy

2. 

Excellence Environmental Carcinogenesis, Environmental Protection and Health Prevention Agency, Emilia-Romagna, viale Filopanti 22, Bologna, Italy

3. 

Institute for Biocomplexity and Informatics, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada

Received  August 2007 Revised  February 2008 Published  March 2008

This paper describes the effects of perturbations, which simulate the knock-out of single genes, one at a time, in random Boolean models of genetic networks (RBN). The analysis concentrates on the probability distribution of so-called avalanches (defined in the text) in gene expression. The topology of the random Boolean networks considered here is of the scale-free type, with a power-law distribution of outgoing connectivities. The results for these scale-free random Boolean networks (SFRBN) are compared with those of classical RBNs, which had been previously analyzed, and with experimental data on S. cerevisiae. It is shown that, while both models approximate the main features of the distribution of experimental data, SFRBNs tend to overestimate the number of large avalanches.
Citation: Roberto Serra, Marco Villani, Alex Graudenzi, Annamaria Colacci, Stuart A. Kauffman. The simulation of gene knock-out in scale-free random Boolean models of genetic networks. Networks & Heterogeneous Media, 2008, 3 (2) : 333-343. doi: 10.3934/nhm.2008.3.333
[1]

William Chad Young, Adrian E. Raftery, Ka Yee Yeung. A posterior probability approach for gene regulatory network inference in genetic perturbation data. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1241-1251. doi: 10.3934/mbe.2016041

[2]

Dong-Uk Hwang, S. Boccaletti, Y. Moreno, R. López-Ruiz. Thresholds for Epidemic Outbreaks in Finite Scale-Free Networks. Mathematical Biosciences & Engineering, 2005, 2 (2) : 317-327. doi: 10.3934/mbe.2005.2.317

[3]

Thomas Hillen, Peter Hinow, Zhi-An Wang. Mathematical analysis of a kinetic model for cell movement in network tissues. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1055-1080. doi: 10.3934/dcdsb.2010.14.1055

[4]

Giuseppe Bianchi, Lorenzo Bracciale, Keren Censor-Hillel, Andrea Lincoln, Muriel Médard. The one-out-of-k retrieval problem and linear network coding. Advances in Mathematics of Communications, 2016, 10 (1) : 95-112. doi: 10.3934/amc.2016.10.95

[5]

Matthias Täufer, Martin Tautenhahn. Scale-free and quantitative unique continuation for infinite dimensional spectral subspaces of Schrödinger operators. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1719-1730. doi: 10.3934/cpaa.2017083

[6]

Jiangtao Mo, Liqun Qi, Zengxin Wei. A network simplex algorithm for simple manufacturing network model. Journal of Industrial & Management Optimization, 2005, 1 (2) : 251-273. doi: 10.3934/jimo.2005.1.251

[7]

A. Chauviere, T. Hillen, L. Preziosi. Modeling cell movement in anisotropic and heterogeneous network tissues. Networks & Heterogeneous Media, 2007, 2 (2) : 333-357. doi: 10.3934/nhm.2007.2.333

[8]

David J. Aldous. A stochastic complex network model. Electronic Research Announcements, 2003, 9: 152-161.

[9]

Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279

[10]

Jan Lorenz, Stefano Battiston. Systemic risk in a network fragility model analyzed with probability density evolution of persistent random walks. Networks & Heterogeneous Media, 2008, 3 (2) : 185-200. doi: 10.3934/nhm.2008.3.185

[11]

Kashi Behrstock, Michel Benaïm, Morris W. Hirsch. Smale strategies for network prisoner's dilemma games. Journal of Dynamics & Games, 2015, 2 (2) : 141-155. doi: 10.3934/jdg.2015.2.141

[12]

Kangkang Deng, Zheng Peng, Jianli Chen. Sparse probabilistic Boolean network problems: A partial proximal-type operator splitting method. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1881-1896. doi: 10.3934/jimo.2018127

[13]

Gheorghe Craciun, Baltazar Aguda, Avner Friedman. Mathematical Analysis Of A Modular Network Coordinating The Cell Cycle And Apoptosis. Mathematical Biosciences & Engineering, 2005, 2 (3) : 473-485. doi: 10.3934/mbe.2005.2.473

[14]

K. A. Ariyawansa, Leonid Berlyand, Alexander Panchenko. A network model of geometrically constrained deformations of granular materials. Networks & Heterogeneous Media, 2008, 3 (1) : 125-148. doi: 10.3934/nhm.2008.3.125

[15]

Fabio Camilli, Elisabetta Carlini, Claudio Marchi. A flame propagation model on a network with application to a blocking problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 825-843. doi: 10.3934/dcdss.2018051

[16]

Liping Zhang. A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial & Management Optimization, 2007, 3 (4) : 727-737. doi: 10.3934/jimo.2007.3.727

[17]

Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Linear model of traffic flow in an isolated network. Conference Publications, 2015, 2015 (special) : 670-677. doi: 10.3934/proc.2015.0670

[18]

Adriano Festa, Simone Göttlich, Marion Pfirsching. A model for a network of conveyor belts with discontinuous speed and capacity. Networks & Heterogeneous Media, 2019, 14 (2) : 389-410. doi: 10.3934/nhm.2019016

[19]

Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Bridging the gap between variational homogenization results and two-scale asymptotic averaging techniques on periodic network structures. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 223-250. doi: 10.3934/naco.2017016

[20]

Reihaneh Mostolizadeh, Zahra Afsharnezhad, Anna Marciniak-Czochra. Mathematical model of Chimeric Anti-gene Receptor (CAR) T cell therapy with presence of cytokine. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 63-80. doi: 10.3934/naco.2018004

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (5)

[Back to Top]